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The compression viewpoint on machine learning [5, 2] holds that a good
model of data is a model that is good at losslessly compressing the data,
including the cost of describing the model itself. This automatically pe-
nalizes more complex models.
Given their huge number of parameters, are deep neural networks able
to compress data, including the cost of describing the weights?

Alice wants to transmit some information to Bob efficiently. She has
a dataset D = {(x1, y1), ..., (xn, yn)} where x1, ..., xn are some inputs
and y1, ..., yn some labels. Bob also has the data x1, ..., xn, but he does
not have the labels. Alice can send the labels directly, or she can send
a model that allows Bob to recompute the labels from the inputs.
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1� Learning models: A compression problem

Shannon–Huffman code [1]: Suppose that Alice and Bob have
agreed in advance on a model p, and both know the inputs x1:n. Then
there exists a code to transmit the labels y1:n losslessly with codelength

Lp(y1:n|x1:n) = −
n∑
i=1

log2 p(yi|xi)

• If the model p predicts yi well, for example p(yi|xi) = 0.9, the code-
length of yi with p is only 0.15 bits. If the model p is wrong, for
example p(yi|xi) = 0.01, the codelength of yi with p is 6.64 bits.
•This coincides with the cross-entropy loss.

2� Coding data with a probabilistic model

Alice can send the labels without using the inputs, with the uniform
encoding: Lunif(y1:n|x1:n) = n log2K
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On a classification task with 10 classes, each label costs 3.32 bits to
encode with the uniform code. This baseline for compression is 199
kbits for MNIST and 166 kbits for CIFAR10.

3� Baseline for compression: Uniform encoding

Alice can first send a model pθ∗, and then use it to encode the data:

L2-part
θ∗ (y1:n|x1:n) := Lparam(θ

∗)−
n∑
i=1

log2 pθ∗(yi|xi)

Model p
q

encodes
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•Alice can encode θ∗ with the float32 binary encoding. In deep learn-
ing, this is much worse than the uniform encoding.
•Network compression [3] tools allow for more efficiency in sending the
model, but this is still much worse than the uniform encoding.

4� Send a model, then send the data

If Alice and Bob agreed on a Bayesian prior over θ, Alice can first send
a probability distribution β over θ, which costs KL (β‖prior), and then
send the data.

Lvar
β (y1:n|x1:n) = KL (β‖α)− Eθ∼β

[ n∑
i=1

log2 pθ(yi|xi)
]

• If β is a multivariate Gaussian, Lvar
β can be optimized by SGD.

•Variational inference is known as a regularization method for deep
learning models [4].

5� Variational code

Alice can send the data online: Each time Bob receives a data, they
both re-train the model using all data already sent. This updated model
is then used to encode the next data.

Lpreq(y1:n|x1:n) =
n∑
i=1

− log2 pi−1(yi|xi)

where pi−1 is the model trained with the data (x1:i−1, y1:i−1).

Model p
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6� Coding the data online

Compression bounds obtained with deep learning models, for several
codes. We used many architectures (Shallow networks, MLP, LeNet,
VGGs), and selected the best ones for compression.

Code MNIST CIFAR10

Codelength Comp. Test Codelength Comp. Test
(kbits) Ratio Acc (kbits) Ratio Acc

Uniform 199 1. 10% 166 1. 10%

float32 2-part > 8.6Mb > 45. 98.4% > 428Mb > 2500. 92.9%
Network compr. > 400 > 2. 98.4% > 14Mb > 83. 93.3%

Variational 22.2 0.11 98.2% 89.0 0.54 66,5%
Online 4.10 0.02 99.5% 45.3 0.27 93.3%

Deep Learning models with the online code do compress MNIST and
CIFAR10 well. Moreover, in our experiments the models which were
the best for compression were also the best for accuracy.

7� Experimental results

•Variational methods yields surprisingly inefficient codelengths, despite
explicitly minimizing this criterion. This might explain why variational
inference as a regularization method often does not reach optimal test
performance.
•Despite their many parameters, deep learning models do compress the
data well, even when accounting for the cost of describing the model.
•This is consistent with Solomonoff’s theory of induction [5] and
Chaitin’s hypothesis that “comprehension is compression”.

8� Conclusion
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