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Abstract

Deep learning models often have more parameters than observations,
and still perform well. This is sometimes described as a paradox. In this
work, we show experimentally that despite their huge number of parame-
ters, deep neural networks can compress the data losslessly even when tak-
ing the cost of encoding the parameters into account. Such a compression
viewpoint originally motivated the use of variational methods in neural net-
works [HV93, Sch97]. However, we show that these variational methods
provide surprisingly poor compression bounds, despite being explicitly built
to minimize such bounds. This might explain the relatively poor practi-
cal performance of variational methods in deep learning. Better encoding
methods, imported from the Minimum Description Length (MDL) toolbox,
yield much better compression values on deep networks, corroborating the
hypothesis that good compression on the training set correlates with good
test performance.

1 Introduction

Deep Learning has recently achieved outstanding results in many different areas
[LBH15]. One of the poorly understood properties of deep models is their ability
to not overfit despite their large number of parameters.

The Cambridge Dictionary of Statistics [ES10] defines overfitted models as
“models that contain more unknown parameters than can be justified by the data”.
This does not seem to align well with overfit as understood in machine learning,
based on practical performance on a test set. Deep learning models would be
rejected out of hand by traditional criteria such as AIC [Aka74] and BIC [Sch7§],
which heavily penalize the number of parameters.

Information theory and Minimum Description Length (MDL) provide a mea-
sure of the complexity of a model that is not directly based on its number of
parameters, but on its ability to losslessly compress the training data (including
the cost of describing the model itself). One may wonder if this criterion is better
aligned with practical performance for deep learning models. This would vindicate
Chaitin’s hypothesis, based on Occam’s razor, that “comprehension is compres-
sion” [Cha07]: any regularity in the data can be used identically to compress it
or make predictions. This is ultimately rooted in Solomonoff’s general theory of
inference [Sol64]| (see also, e.g., [Hut07, Sch97]): the main principle is to prefer
models that correspond to the “shortest program” to produce the training data,
based on its Kolmogorov complexity [LVO0S§].

To measure compression, the problem is recast as a (lossless) data transmission
problem on the training set. In particular, this protects against one of the aspects
of overfitting in machine learning, namely, data memorization (which does not
compress). This also amounts to estimating the mutual information between the
inputs and labels, as studied e.g. [SZT17] in relationtionship with generalization
ability.



Any parametric probabilistic model can be turned into explicit lossless com-
pression bounds on the data including the cost of transmitting a description of the
model, thanks to a number of techniques from the Minimum Description Length
(MDL) theory [Grii07]. This will naturally penalize more complex models. In
the neural network community, MDL was introduced as far back as [HV93], via
variational inference, which explicitly optimizes a compression bound. However,
this has not been widely adopted in deep learning, and has been found to decrease
practical performance. This seems to go against Chaitin’s hypothesis.

In this work, we examine Chaitin’s hypothesis in the context of Deep Learning.
We do not introduce new deep learning methods or architecturesr; rather, we take
some already working methods and try to understand why they generalize by
investigating if they can compress the training data. Our contributions are as
follow:

e We confirm the fact, already observed in [Grall] using variational codes,
that standard deep learning models can represent the data together with the
model in fewer bits than a naive encoding of the data. This holds even for
datasets as small as MNIST.

e However, we find that variational inference yields surprisingly inefficient
codelengths, despite explicitly being a codelength minimization method.
Other methods from the MDL toolbox, such as prequential coding, yield
substantially better codelengths that correlate better with test set perfor-
mance.

e We introduce practical ways to compute efficient compression bounds with
deep learning models. In particular, this provides ways to quantify the
mutual information between inputs and outputs. We also introduce self-
switch, an efficient way to improve on prequential compression bounds for
models learned by an iterative algorithm like gradient descent.

e As an aside, we show that while deep learning models can fit fake labels
[ZBH'17], they are not able to compress them: models trained using MDL-
based regularization such as variational methods behave very differently on
actual or fake labels and do not overfit the fake labels, successfully detecting
the absence of mutual information.

2 Probabilistic Models, Compression, and Infor-
mation Theory

Imagine that Alice wants to efficiently transmit some information to Bob. Alice
has a dataset D = {(z1,¥1), .-, (Tn,Yn)} where zq,...,2, are some inputs and
Y1, ..., Yn some labels. We do not assume that these data come from a “true”
probability distribution. Bob also has the data z1, ..., x,, but he does not have
the labels. This describes a supervised learning situation in which the inputs x
may be publicly available, and a prediction of the labels y is needed. How can
deep learning models help with data encoding? Omne key problem is that Bob
does not necessarily know the precise, trained model that Alice is using. So some
explicit or implicit transmission of the model itself is required.

We study, in turn, various methods to encode the labels y, with or without
a deep learning model. Encoding the labels knowing the inputs is equivalent to
estimating their mutual information (Section 2.4); this is distinct from the problem
of practical network compression (Section 3.2) or from using neural networks for
lossy data compression.



Our running example will be image classification on the MNIST [LBBH98| and
CIFARI10 [Kri09] datasets.

2.1 Definitions and notation

Let X be the input space and ) the output (label) space. In this work, we only con-
sider classification tasks, so ) = {1, ..., K'}. The dataset is D := {(x1,91), .- (Yn, Zn) }.
Denote xg. := (Tk, Tht1y -y Ti—1, Z1)-

We define a model for the supervised learning problem as a conditional proba-
bility distribution p(y|z), namely, a function such that for eachz € X', >° v, p(ylz) =
1. A model class, or architecture, is a set of models depending on some parameter
0: M ={py,0 € O}.

The Kullback—Leibler divergence between two distributions is

KL(ullv) = Expllog, ’;EQJ 1)

2.2 Models and codelengths

We recall a basic result of compression theory [Sha48].

Proposition 1 (Shannon—-Huffman code). Suppose that Alice and Bob have agreed
in advance on a model p, and both know the inputs x1.,. Then there exists a code
to transmit the labels y1., losslessly with codelength

Ly(yrnla1n) = = Y logy plyslz:) (2)
i=1

up to at most one bit.

This bound is known to be optimal if the data are independent and coming
from the model p [Mac03].

The one additional bit in the Shannon—Huffman code is incurred only once for
the whole dataset [Mac03]. With large datasets this is negligible. Thus, from now
on we will systematically omit the +1 as well as admit non-integer codelengths
[Grii07]. We will use the terms codelength or compression bound interchangeably.

This bound is exactly the categorical cross-entropy loss evaluated on the model
p. Hence, trying to minimize the description length of the outputs over the pa-
rameters of a model class is equivalent to minimizing the usual classification loss.

Here we do not deal with the practical implementation of compression algo-
rithms: we only care about the theoretical bit length of their associated encodings.
We are interested in measuring the amount of information contained in the data,
the mutual information between input and output, and how it is captured by the
model. Formally, a codelength can be defined as any function L that satisfies the
Kraft inequality >_, 2-LW) < 1 [Mac03]. This implies the existence of an actual
encoding with codelength L up to +1. Thus, we will directly work with codelength
functions.

An obvious limitation of the bound (2) is that Alice and Bob both have to
know the model p in advance. This is problematic if the model must be learned
from the data.



2.3 Uniform encoding

The uniform distribution punit(y|z) = & over the K classes does not require any
learning from the data, thus no additional information has to be transmitted.
Using this uniform encoding in (2) results in the codelength

Lunif(yl:n‘xlzn) =nlogy, K (3)

This uniform encoding will be a sanity check against which to compare the
other encodings in this text.

For MNIST, the uniform encoding cost is 60000 x logy 10 = 199 kbits. For
CIFAR, the uniform encoding cost is 50000 x log, 10 = 166 kbits.

2.4 Mutual information between inputs and outputs

Intuitively, the only way to beat a trivial encoding of the outputs is to use the
mutual information (in a loose sense) between the inputs and outputs.
This can be formalized as follows. Assume that the inputs and outputs follow
a “true” joint distribution ¢(x,y). Then any transmission method with codelength
L satisfies [Mac03]
E,[L(yl2)] > H(yla) (4)

Therefore, the gain (per data point) between the codelength L and the trivial
codelength H(y) is

H(y) — Ey[L(y|z)] < H(y) — H(ylz) = I(y;z) (5)

the mutual information between inputs and outputs [Mac03].

Thus, the gain of any codelength compared to the uniform code is limited by
the amount of mutual information between input and output. (This bound is
reached with the true model ¢(y|z).) Any successful compression of the labels is,
at the same time, a direct estimation of the mutual information between input and
output. The latter is the central quantity in the Information Bottleneck approach
to deep learning models [SZT17].

Note that this still makes sense without assuming a true underlying proba-
bilistic model, by replacing the mutual information with the “absolute” mutual
information K (y) — K(y|z) based on Kolmogorov complexity K [LVO08].

3 Compression Bounds via Deep Learning

Let us introduce different compression methods based on deep learning models,
taken from the MDL toolbox.

3.1 Two-part encodings

In a typical situation, Alice and Bob might first agree on a model class (such as
“neural networks with two layers and 1,000 neurons per layer”). However, Bob
does not have access to the labels, so Bob cannot train the parameters of the
model. Therefore, if Alice wants to use such a parametric model, the parameters
themselves would have to be transmitted.

Such codings in which Alice first transmits the parameters of a model, then
encodes the data using this parameter, have been called two-part codes [Grii07].



Table 1: Compression bounds via Deep Learning. Compression bounds given by
different codes on two datasets, MNIST and CIFAR10. The Codelength is the number of
bits necessary to send the labels to someone who already has the inputs. This codelength
includes the description length of the model. The compression ratio for a given code
is the ratio between its codelength and the codelength of the uniform code. The test
accuracy of a model is the accuracy of its predictions on the test set. For 2-part and
network compression codes, we report results from [HMD15] and [XYZL17] . The values
in the table for these codelengths and compression ratio are upper bounds, since it only
takes into account the codelength of the weights, and not the codelength of the data
encoded with the model. For variational, prequential, switch and self-switch codes, we
selected the model and hyperparameters providing the best compression bound.

CODELENGTH COMPRESSION TEST
(kbits) RATIO AcCURACY

UNIFORM 199 1. 10%
FLOAT32 2-PART > 8.6Mb > 45. 98.4%
NETWORK COMPR. > 400 > 1. 98.4%
VARIATIONAL 23.9 0.12 95.5%
PREQUENTIAL 4.10 0.02 99.5%
SWITCH 4.05 0.02 99.5%
SELF-SWITCH 4.05 0.02 99.5%

(a) Compression bounds for MNIST Dataset

CODELENGTH COMPRESSION TEST
(kbits) RaTIO ACCURACY

UNIFORM 166 1. 10%
FLOAT32 2-PART > 428Mb > 2500. 92.9%
NETWORK COMPR. > 14Mb > 83. 93.3%
VARIATIONAL 89.0 0.54 61,6%
PREQUENTIAL 45.3 0.27 93.3%
SWITCH 34.6 0.21 93.3%
SELF-SWITCH 34.9 0.21 93.3%

(b) Compression bounds for CIFAR Dataset

Definition 1 (Two-part codes). Assume that Alice and Bob have first agreed
on (pp)oco a model class. Let Lparam(8) be any encoding scheme for parameters
0 € ©. Let 0* be any parameter. The corresponding two-part codelength is

Lz:«part(yl:n‘xlzn) = Lparam(e*) + Lps* (yl:n|$1:n) (6)
= Lparam(o*) - Z 10g2 Do~ (yz |xz) (7)
=1

There exist different codes Lparam for 8. One of them is the standard float32
binary encoding for 6, for which

Lparam(0) = 32 dim(6). (8)

In deep learning, two-part codes are widely inefficient and much worse than
the uniform encoding [Grall]. For a model with 1 million parameters, the two-
part code with float32 binary encoding will amount to 32 Mbits, or 200 times the
uniform encoding on CIFARI10.
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Figure 1: Detecting fake labels with variational learning. We train a Deep Neural
Network model on MNIST with true and fake labels, both with and without variational
learning. The model is an MLP with 3 hidden layers of size 200, with RELU units.
With ordinary training, the model is able to overfit random labels, though training is
slower than with the true labels. The plot shows the effect of using variational learning
instead, and reports the variational objective (encoding cost of the training data), on
true and fake labels. We isolated the contribution from parameter encoding in the total
loss (KL term in (9)). With true labels, the encoding cost is below the uniform encoding,
and half of the description length is information contained in the weights. With fake
labels, on the contrary, the encoding cost converges to a uniform random model, with
no information contained in the weights: there is no mutual information between inputs
and outputs.

3.2 Practical network compression and two-part codes

The practical encoding of trained models is a well-developed research topic, e.g.,
for use on small devices such as cell phones. Such encodings can be considered as
a two-part code using a clever code for 6 instead of encoding every parameter on
32 bits.

Different strategies exist, such as training a student layer to approximate a
well-trained network [BC14, RBK™ 15|, or using a pipeline involving retraining,
pruning, and quantization of the model weights [HMD15, HPTD15, SZ14, LUW17,
SLM16, UMW17].

Still, the resulting codelengths (for compressing the labels given the data) are
way above the uniform compression bound for image classification. With the
different methods cited above, the network weights are compressed by a factor
less than 100. Even for a relatively small network with 1 million parameters,
encoding the compressed network will cost 320kbits, already twice above the
uniform codelength for MNIST or CIFAR.

3.3 Variational Code: Networks with Random Weights

Another strategy for encoding weights with a limited precision is to represent these
weights by random variables: the uncertainty on 6 represents the precision with
which @ is transmitted. The variational code turns this into an explicit encoding
scheme, thanks to the bits-back argument [HV04]. This idea was introduced as a
way to compute codelength bounds with neural networks [HV93], but is now more
used as a regularization technique [BCKW15]. This method yields the following
codelength.



Definition 2 (Variational code). Assume that Alice and Bob have agreed on a
model class (pg)oco and a prior a over ©. Then for any distribution 5 over ©,
there exists an encoding with the following codelength:

L5 (yrnlz1n) = KL (Blla) + Eonp[Lp, (Y1:0]21:0)] 9)

n
—KL(3la) + Eoes| 3~ lompolled| (10
i=1
The compression bound given by the variational code can be minimized over
B by choosing a parametric model class (84)pce, and minimizing (9) over ¢.
A common model class for § is the set of multivariate Gaussian distributions
{N(p, X)), € REY diagonal}, and g and ¥ can be optimized with a stochas-
tic gradient descent algorithm [Grall, KTR17]. ¥ can be interpreted as the
precision with which the parameters are encoded.
The variational bound L is an upper bound for the Bayesian description
length bound of the Bayesian model py with parameter 6 and prior «. Considering
the Bayesian distribution of y,

pBayes<y1:n‘xl:n) :/ p@(yl:n|x1:n)a(9)d9a (11)
0cO
then Proposition 1 provides an associated code via (2) with model ppayes:
LBayes(yl:nlxl:n) = - 10g2 pBayes(yl:nle:n) (12)
Then, for any  we have [Grall]
LE (Y| @1:n) = LPYS (Y1 |210) (13)

with equality if and only if 3 is equal to the Bayesian posterior pgayes (0| 1:n, Y1:n)-
Variational methods can be seen as a way to approximate Bayesian inference, since
this Bayesian posterior is often intractable.

We computed practical compression bounds with variational methods on MNIST
and CIFAR10. Neural networks that give the best variational compression bounds
appear to be smaller than networks trained the usual way. We tested various fully
connected networks and convolutional networks: the models that gave the best
variational compression bounds were small fully connected networks with 2 hid-
den layers of size 256. The random weights for 5 are also used at test time; the
posterior average parameter has also been used and improves performance a bit
[BCKW15], but this does not test Chaitin’s hypothesis. Moreover, we selected
the best model in Table 1 based on compression, not test accuracy. This results
in a drop of test accuracy with respect to other settings, directly challenging the
link between compression and test accuracy.

On MNIST, this provides a codelength of the labels (knowing the inputs) of
24.1 kbits, i.e., a compression ratio of 0.12. The model which reached this score
achieved 95.5% classification accuracy on the test set.

On CIFAR, we obtained a codelength of 89.0 kbits, i.e., a compression ratio of
0.53. The model which reached this score achieved 61.6% classification accuracy
on the test set.

We can make two observations. First, choosing the model class which min-
imizes variational codelength selects smaller deep learning models than a cross-
validation procedure. Second, the selected model has low classification accuracy
on the test set on MNIST and CIFAR, compared to models trained without varia-
tional method. This seems to agree with a common criticism of Bayesian and MDL
methods as too conservative as model selection procedures: these methods are con-
sistent, but in many settings, their convergence rates are a factor O(logn) slower
than leave-one-out cross-validation or AIC criterion [RSY92, FG94, BY99, Grii07].



Algorithm 1 Prequential encoding

Input: data x1.,,y1.n, timesteps 1 =t <t;1 < ... <tg=n
Alice transmits the random seed w (if using stochastic optimization).
Alice encodes y;.¢, with the uniform code. This costs ¢; log, K bits. Bob decodes
Yi:ty -
fors=1toS—1do
Alice and Bob both compute 0, = é($1;t57y1;ts,w).
Alice  encodes ¥ y1:4,,, with  model Pg..- This  costs
- 10g2 by, (yts+1:ts+1 ‘xts+13ts+1) bits
Bob decodes ¥, 41:¢,.,
end for

We will use another coding procedure to show that deep neural models which
generalize well also compress well.

Still, variational methods are an efficient regularization method against overfit-
ting. Convolutional neural networks commonly used for image classification tasks
are able to reach 100% accuracy on random labels [ZBHT 17|, even though there
is no mutual information between the inputs and the labels. However, reproduc-
ing this experiment with codelength as the loss function (instead of unregularized
classification loss), we observe that deep neural models are able to learn the true
labels, but that on fake labels the model just converges to the random uniform
model as expected. See Figure 1 for details.

3.4 Prequential or Online code

The prequential (or online) code is a way to encode both the model and the labels
without directly encoding the weights, founded on the prequential approach to
statistics [Daw84], by using prediction strategies. We call p a prediction strategy for
predicting the labels in ) knowing the inputs in X if for all &k, p(yg+1|T1:5+1,Y1:%)
is a conditional model; namely, any strategy for predicting the k + 1- label after
already having seen k input-output pairs. In particular, such a model may be
learned using the k first data samples. Any prediction strategy defines a model
on the whole dataset:

PP YY1l 21n) = pyilzn) - p(y2lTie, y1) - - P(YnlT1m, Y1n—1) (14)

Let (pg)oco be a deep learning model. We assume that we have a learning
algorithm which outputs, from any number of data samples (x1.x,y1.x), a weight
vector é(xl: k> Y1:x). Even though the encoding procedure is called “online”, it does
not mean that only the most recent sample is used to update the parameter 0: the
optimization procedure 6 can be any deterministic or stochastic optimization tech-
nique using all the previous samples (z1.x, y1.x), only requiring that the algorithm
has an explicit stopping criterion.

This technique encodes the data in an incremental way: at each step k,
9(m1:k,y1:k) is used to predict yx41. In practice, the learning procedure 0 may
only reset and retrain the network at certain timesteps. We choose timesteps
1=ty <t <..<tg=mn,and we encode the data by blocks, always using the
model learned from the already transmitted data (Algorithm 1).

In practice, the optimization procedure for neural networks may be stochastic
(initial values, dropout, data augmentation...), and Alice and Bob need to make
all the same random actions in order to get the same final model. A simple way
to do this without sending more informations is to agree on a random seed w (or
pseudorandom numbers) beforehand, so that the random optimization procedure



9(x1:t5 ,Y1:¢,) s a deterministic one defined by é(xms ,Y1:t.,w). Then Bob is always
able to decode the data. This code, using a uniform encoding for the first few
points, yields the following description length:

Definition 3 (Prequential code). Given a model py and a learning algorithm

0(x1.x,Y1.x), the prequential codelength is
S—1

LP U yrp|w1n) = t1logy K+ Y =105 05, (Y, 41,41 [Tt 412004 (15)
s=0

where for each s, éts = é(a:l:ts,yl;ts) is the parameter learned on data samples 1
to ts.

The model parameters are never encoded directly in this algorithm. This
method takes full advantage of the model’s generalization ability from the previous
data to the next.

Prequential coding considerably improves compression bounds. On MNIST,
we computed the description length of the labels with different networks (Ap-
pendix A.2). The best compression bound was given by a convolutional network
of depth 8. It achieved a description length of 4.10 kbits, i.e., a compression ratio
of 0.021, with 99.5% test set accuracy. This codelength is 6 times smaller than
the variational codelength.

On CIFAR, we tested a simple multilayer perceptron (MLP), a small convolu-
tional network (tinyCNN), and a VGG-like [SZ14] convolutional network with two
different training procedures: without data augmentation and batch normaliza-
tion (VGGa) [IS15], and with both of them (VGGD) (Appendix A.2). The results
are in Figure 2. The best compression bound was obtained with the VGG-like
network trained with data augmentation and batch normalization, achieving a
codelength of 45.3kbits, i.e., a compression ratio of 0.27, and 93% test set ac-
curacy. This codelength is twice smaller than the variational codelength. The
difference between VGGa and VGGDb’s codelengths also show the impact of the
training procedure on compression bounds, even with a fixed architecture.

4 Switching between models against the catch-up
phenomenon

A weakness of prequential codes is the catch-up phenomenon, identified by [VGD12]
in the context of Bayesian model selection. Assume that Alice and Bob agree on
a large architecture for sending the labels of the data knowing the inputs with the
prequential code, with a non-regularized gradient descent algorithm. Then, there
is a risk of overfitting during the first steps of the prequential encoding, when the
model is trained with a few data samples. Consequently, the encoding cost of
the first packs of data might be larger than with the uniform code. Even after
the encoding cost for the next labels becomes lower, the cumulated codelength
will need a lot of time to catch-up, and reach a compression ratio below 1. The
catch-up phenomenon can be observed in practice when learning with neural net-
works: in Figure 2, the model (VGGb) needs 5,000 samples on CIFAR. to reach
a compression ratio < 1, even though the encoding cost per label become better
than uniform after 1,000 samples.

4.1 Switching between model classes

The solution introduced by [VGD12] is to switch between models, to always encode
a data block with the best model at that point. That way, the encoding adapts
itself to the number of data samples seen.
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Figure 2: Prequential and Self-Switch code results on CIFAR. Results of prequen-
tial encoding on CIFAR with 4 different models: a small Multilayer Perceptron (MLP),
a small convolutional layer (tinyCNN), a VGG-like network without data augmentation
and batch normalization (VGGa) and the same VGG-like architecture but trained with
data augmentation and batch normalization (VGGD) (see Appendix A.2). Performance
is reported during online training, as a function of the number of samples seen so far.
Top: test accuracy on a pack of data [tk;tr+1) given data [1;tx), as a function of t.
Second: codelength per sample (log loss) on a pack of data [tx;tk+1) given data [1;t).
Third: difference between the prequential cumulated codelength on data [1;¢x], and the
uniform encoding. Bottom: compression ratio of the prequential code on data [1;¢x].
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Assume that Alice and Bob have agreed on a set of prediction strategies M =
{p*, k € T}. We define the set of switch sequences, S = {((t1, k1), ..., (t, k1)), 1 =
t1 <ty <..<tp,keZI}

Let s = ((t1,%1),..., (tr, k1)) be a switch sequence. The associated prediction
strategy ps(y1.n|T1.m) uses model p¥i on the time interval [t;;¢;,1), namely

Ps(Yrit1|T1iv1, vii) = P (Yis1 |71, Y1) (16)

where K is such that K; = k; for t; <1 < t;41. Fix a prior distribution 7 over
switching sequences (see [VGD12] for typical examples).

Definition 4 (Switch code). Assume that Alice and Bob have agreed on a set
of prediction strategies M and a prior 7w over S. The switch code first encodes a
switch sequence s strategy, then uses the prequential code with this strategy:

sz(ylznaxlzn) - LT{'(S) + Lgieq(yl:na ml:n) (17)

= —logy m(s) — Y _ logy ™" (yilwi, 1.1, y1:4-1) (18)
=1

where K; is the model used by switch sequence s at time i.

We tested switching between the uniform model, a small convolutional network
(tinyCNN), and a VGG-like network with two training methods (VGGa, VGGD)
(Appendix A.2). On MNIST, switching between models does not make much
difference. On CIFARI10, switching by taking the best model on each interval
[tr;tr+1) saves more than 11kbits, reaching a codelength of 34.6kbits, and a
compression ratio of 0.21. The cost L,(s) of encoding the switch s is negligible.

4.2 Self-Switch: Switching between versions of a model

It may be cumbersome to work with different models in parallel. Instead, for
models learned by gradient descent, we may use the same architecture but with
different parameter values corresponding to different gradient descent stopping
times.

Let (pg)gco be a model class. Let 0, (1:k, y1:k) be the parameter obtained by
some optimization procedure after ¢ epochs of training. For instance, ¢ = 0 would
correspond to using an untrained model (usually close to the uniform model).

We call self-switch code the switch code obtained by switching among the
family of models with different gradient descent stopping times ¢ (based on the
same parametric family (pp)oco). In practice, this means that at each step of the
prequential encoding, after having seen data [1;¢;), we train the model on those
data and record, at each epoch, the loss obtained on data [tx;trr1). We then
switch optimally between those. We incur the small additional cost of encoding
the number of epochs used for training (which was limited to 10). This is a form
of regularization via early stopping.

The self-switch code achieves similar compression bounds to the switch code,
while storing only one network. On MNIST, there is no difference. On CIFAR,
self-switch loses only 300 bits (0.006 bit/label) with respect to full 4-architecture
switch.

5 Discussion
Too many parameters in Deep Learning models? From an information

theory perspective, the goal of a model is to extract as much mutual information
between the labels and inputs as possible—equivalently (Section 2.4), to compress
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the labels. This cannot be achieved with 2-part codes or practical network com-
pression. With the variational code, the models do compress the data, but with a
worse prediction performance: one could conclude that deep learning models that
achieve the best prediction performance cannot compress the data.

In [GJ16] the authors empirically study the degrees of freedom of deep neural
models and show it is an order of magnitude lower than the number of parameters:
from an AIC perspective, the number of parameters might not necessarily be a
problem for model selection.

Thanks to prequential and switch codes, we have seen that deep learning mod-
els, even with a large number of parameters, are able to compress the data: from
an information theory point of view, the number of parameters is not an obstacle
to compression.

Comprehension and Compression. Chaitin’s hypothesis on the equivalence
between comprehension and compression is the foundation of the Minimum De-
scription Length principle and Solomonoff’s theory of induction [Sol64]. This can
also be used as a model selection procedure: select the model which compresses
the most. On the contrary, in statistical learning theory, the selected model is
the model which generalizes best on a test set, based, e.g., on a cross-validation
procedure.

Under the strong assumption that the model parameter is identifiable (which
excludes most deep learning models) and the data are actually produced with this
model, the differences between model selection via compression or generalization
has been well studied: MDL model selection is asymptotically equivalent to the
BIC criterion [Grii07], while the leave-one-out cross-validation is equivalent to the
AIC criterion [Sto77]. BIC and AIC both have desirable properties. The BIC
criterion is consistent, and the AIC criterion has an optimal convergence rate.
Model switching has been presented as a way to get almost the best properties of
these two approaches [vdPG14].

In the practical results presented here, models which are better at generaliza-
tion on new data also achieve great compression bounds with the prequential or
switch codes. This is consistent with Chaitin’s hypothesis, contrary to previous
observations with the variational code.

Inefficiency of Variational Models for Deep Networks. Variational meth-
ods are a strong regularization for training deep neural networks, but lead to worse
performance than more usual training methods.

The objective of variational methods is equivalent to minimizing a description
length. On image classification, variational methods do not have good results even
for their own objective, compared to prequential codes. This makes their relatively
bad results at test time less surprising.

Understanding this observed inefficiency of variational methods in the networks
above is an open problem. As stated in (13) above, the variational codelength is
an upper bound for the Bayesian codelength. More precisely, with the notation
above, we have:

L‘[;ar(ylznl'rl:n) = LBayes(ylzn‘fElzn) + KL (pBayes(glel:ru yln)Hﬁ) (19)

where p(0|x1.n, Y1) is the Bayesian posterior on 6 given the data. Empirically,
on MNIST and CIFAR,

Lpreq(ylzn|x1:n) < Léar(yl:nhjl:n)- (20)

The large difference between these two codelengths is the sum of three terms, all
of which could explain the gap:
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e The optimization of the parameters ¢ of the approximate Bayesian posterior
B 3 might be imperfect.

e The optimal distribution £* might not approximate the posterior distribu-
tion p(0|x1.n, y1.n) well, leading to a large term KL(p(0|z1.n,¥1.n)]|8*) in
(19). This is a problem with choosing the model class for .

e Finally, the (untractable) Bayesian codelength may be itself larger than the
prequential one. This would be a problem of underfitting in parametric
Bayesian inference (even on the codelength or Bayesian evidence bound it-
self, not only on generalization performance): in our limited experiments,
incremental encoding with a parameter learned by SGD works better than
with the Bayesian posterior.

Sorting these contributions is a topic for future research.

6 Conclusion

Deep learning models can represent the data together with the model in fewer bits
than a naive encoding, despite their many parameters. This also measures the
amount of mutual information between the inputs and outputs. However, varia-
tional inference, though explicitly designed to minimize such codelengths, provides
very poor values in this context compared to a simple incremental (prequential)
coding scheme.
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A Technical Details

We describe the technical details of the models used for the experiments in this
paper. All the code will be publicly available.

A.1 Variational Learning

For Variational Learning, we used a prior o = N (0, a%[d) with o9 = 0.05, chosen
to optimize the compression bounds.

The chosen class of posterior was the class of multivariate gaussian distribu-
tions with diagonal covariance matrix {N(u,%) , u € R? % diagonal}. It was
parametrized by (8,,5)(u,p)crdxrd, With o € R? defined as o; = log(1 + exp(p;)),
and the covariance matrix ¥ as the diagonal matrix with diagonal values 0%, ..., 03.

We optimize the bound (9) as a function of (u,p) with a gradient descent
method, and estimate its values and gradient with a Monte-Carlo method. Since
the prior and posteriors are gaussian, we have an explicit formula for the first part
of the variational loss KL(8, ,||c) [HV93]. Therefore, we can easily compute its
values and gradients. For the second part

(1, p) = Bong,, [Z —log, po(yz‘lxi)} ; (21)
i=1

we can use the following proposition [Grall]. For any function f : © — R, we
have

5B, L6 = Eas, [ 57-0)] (22)

9 78(71 of 0; —
a—piEewﬁ,‘,,p[f(a)]*api E9~ﬁw[69i o ]

(23)

Therefore, we can estimate the values and gradients of (9) with a Monte-Carlo
algorithm:

S
0 of , .4
8M1E0Nﬁ“ , ~ E: 87 (%) (24)
9 ~, Ooi of 07 — i

o B 10 = 52 30 0 2 (25)
where 6%, ...,0° are sampled from Bu,p- In practice, we used S = 1 both for the
computations of the variational loss and its gradients.

We used both convolutional and fully connected architectures, but in our ex-
periments fully connected models were better for compression. For CIFAR and
MNIST, we used fully connected networks with two hidden layers of width 256,
trained with SGD, with a 0.005 learning rate and mini-batchs of size 128.

During the test phase, we sampled parameters 6 from the learned distribution
B, and used the model p; for prediction. This explains why our test accuracy
on MNIST is lower than other numerical results [BCKW15|, since they use for
prediction the averaged model with parameters § = Eg~3,.., 0] = p. But our goal
was not to get the best prediction score, but to evaluate the model which was
used for compression on the test set.

A.2 Prequential Learning

Prequential Learning on MNIST On MNIST, we used three different mod-
els:
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1. The uniform probability over the labels.

2. A fully connected network or Multilayer Perceptron (MLP) with two hidden
layers of dimension 256.

3. A VGG-like convolutional network with 8 convolutional layers with 32, 32,
64, 64, 128, 128, 256 and 256 filters respectively and max pooling operators
every two convolutional layers, followed by two fully connected layers of size
256.

For the two neural networks we used Dropout with probability 0.5 between the
fully connected layers, and optimized the network with the Adam algorithm with
learning rate 0.001.

The successive timestep for the prequential learning t1,ts,...,ts are 8, 16, 32,
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 and 32768.

For the prequential code results in Table 1, we selected the best model, which
was the VGG-like network. For the switch code, we switched between the three
models. For the self-switch code, we used only the VGG-like network at several
epochs.

Prequential Learning on CIFAR On CIFAR, we used four different models:
1. The uniform probability over the labels.

2. A fully connected network or Multilayer Perceptron (MLP) with two hidden
layers of dimension 512.

3. A convolutional network (tinyCNN) with four convolutional layers with
32 filters, and a maxpooling operator after every two convolutional layers.
Then, two fully connected layers of dimension 256. We used Dropout with
probability 0.5 between the fully connected layers.

4. A VGG-like network with 13 convolutional layers from [Zagl5|. We trained
this architecture with two learning procedures. The first one (VGGa) with-
out batch-normalization and data augmentation, and the second one (VGGb)
with both of them, as introduced in [Zagl5].

We optimized the network with the Adam algorithm with learning rate 0.001.

For prequential learning, the timesteps t1,to,...,ts were: 10, 20, 40, 80, 160,
320, 640, 1280, 2560, 5120, 10240, 20480, 40960. The training results can be seen
in Figure 2.

For the prequential code, all the results are in Figure 2. For the results in
Table 1, we selected the best model for the prequential code, which was VGGb.
For the switch code, we switched between the five models. For the self-switch
code, we used only the VGGb model at several epochs.
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