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Chapter 1

A short introduction to
Reinforcement Learning

In this chapter, we will give a short introduction to Reinforcement Learning (RL). Every chapter
in this thesis except Chapters 3 and 4 are studying aspects of RL. The purpose of this chapter
is to introduce the fundamental tools which will be used throughout this thesis, and some of
the most standard algorithms for reinforcement learning in general continuous state spaces,
using function approximators. Additionally, we will state some theoretical properties of these
standard algorithms, without every mathematical details, which are similar to the theoretical
guarantees we will discuss for our algorithms.

1.1 The Reinforcement Learning problem

Reinforcement Learning (RL) is the learning setting in which a learning agent interacts with its
environment. The agent can observe the environment, and from his observations take some
actions. After taking an action, the agent gets a new observation together with a reward. The
reward is a positive or negative scalar signal. The agent’s objective is to gather as much reward
as possible.

Many application can be formalized in that way, and in recent years RL approaches have
provided impressive results in a variety of domains, achieving superhuman performance with no
expert knowledge in perfect information zero-sum games (Silver et al., 2017), reaching top player
level in video games (OpenAI 2018b, Mnih et al. 2015), or learning dexterous manipulation
from scratch without demonstrations (OpenAI, 2018a).

Reinforcement Learning raise additional issues compared to supervised or unsupervised
learning. Here are a few simple examples, highlighting some of the fundamental questions in
RL:

Exploration-exploitation dilemma Alice has to decide every day in which restaurant to
have lunch, from a list of restaurant. Every day, she takes an action (choosing a restaurant for
lunch) and gets a reward (how much she enjoyed the restaurant).

Because every restaurant is changing their menu every day, it is not easy to be sure which
one is the best one (in average): even after tasting a disappointing meal in some place, it would
be a wrong strategy to never go back there again, as it could have been a one-time mistake.
On the contrary, always going to the same restaurant because it is good might prevent Alice to
discover a better one.

This specific setting is usually called the bandit setting, and the problem of finding the
best tradeoff between always going to the currently preferred restaurant and exploring new
possibilities is called the exploration-exploitation tradeoff. In this thesis, exploration strategies
will be discussed in Chapter 5 for near-continuous time environments.

11
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Credit assignment Bob tries to improve his skills at the game of Go by playing with Chloe.
His actions are all the moves authorized by the game. After every action, he observes the
board after Chloe’s move. He only gets a reward at the end of the game if he wins.

In order to improve his skills, Bob will need at the end of the game to understand which
of his moves made him win or lose. This can be extremely difficult, as a game can be a few
hundreds moves long, and the only reward signal is at the end of the game.

This specific problem is usually called the credit assignment problem. One possible way
of tackling the credit assignment problem is via policy evaluation, which informally consists
in measuring the advantage of choosing an action compared to an other (or going to a state
compared to an other). In this thesis, all Part IV will focus on policy evaluation, as well as
Chapter 16 in the context of multi-goal RL.

Model based Reinforcement Learning Dennis is participating in a billiard game compe-
tition. Before every shot, his observation is the current position of every ball. His action is
choosing the angle, velocity and rotation for hitting the white ball. The reward is obtained at
the end of the game,

In order to choose her action, Dennis has to wonder: what will happen if I play this shot?
For each possible shot, he can try to predict the balls positions after the shot. Then, decide
which shot will achieve the best final configuration.

That way of selecting the action is called model-based RL. First, Dennis learned a model :
a way to predict the future state of the environment given its current state and an action.
Then, she can use that model for planning : select the action which optimizes the final position
according to the model.

Unsupervised Reinforcement Learning Elise is playing a game in a maze. At the
beginning of every game, she starts at a random point in the maze, and has to reach a treasure
as fast as possible, which is always at the same spot of the maze. The actions are the moves in
the maze, the observation is the current position in the maze, and the reward is obtained when
reaching the treasure.

During her first game, Elise doesn’t know where the treasure is, and she might explore the
maze randomly for a long time without receiving learning signal to improve her strategy. Still,
she is acquiring knowledge, even without any reward: in order to go faster in the next games,
he can build a map of the maze. Hence, for the second run she will be able to use that map to
reach the treasure faster.

Learning from the environment even when no reward is observed is usually called unsupervised
reinforcement learning. In Part IV of this thesis, we will study unsupervised techniques via the
successor states operator.

In this chapter, we will present the standard formalization of RL with Markov Decision
Process. Then, we will present some of the most important algorithms in RL.

1.2 The Reinforcement Learning framework

We now introduce the standard Reinforcement Learning framework with Markov Decision
Processes (Sutton and Barto, 2018, Chapter 3), and define related mathematical tools.

Markov Decision Process An environment ℳ described as a Markov Decision Process
(MDP) is defined as ℳ = ⟨𝒮,𝒜, 𝑃,𝑅, 𝛾⟩ where:

• 𝒮 is the state-space of the environment. It can be finite, discrete, or continuous. At step
𝑡 ∈ N, the agent will observe the current state 𝑠𝑡

• 𝒜 is the action space. As for the state space, it can be finite, discrete, or continuous. At
step 𝑡 ∈ N, the agent will execute an action 𝑎𝑡 in the environment
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• 𝑃 (d𝑠′|𝑠, 𝑎) is the transition probability operator, which describes the probability distribu-
tion of the next state 𝑠′ starting from 𝑠 and after action 𝑎.

• ℛ(𝑟|𝑠) reward probability density in state 𝑠. We define for every state 𝑠 ∈ 𝒮: 𝑅(𝑠) :=
E𝑟∼ℛ(𝑟|𝑠)[𝑟] the expected reward in state 𝑠.

• 𝛾 is the discount factor, with 0 ⩽ 𝛾 < 1.

In the finite case, 𝑃𝑠𝑎𝑠′ can be viewed as a tensor of size 𝑆 × 𝐴 × 𝑆 where 𝑆 := |𝒮| and
𝐴 := |𝒜|. In the general case, for each 𝑠 ∈ 𝒮, 𝑃 (d𝑠′|𝑠, 𝑎) is a probability measure on 𝑠′ that
depends on 𝑠. From now on, we use the notation 𝑃 (d𝑠′|𝑠, 𝑎). The measure formalism will be
important in Parts IV and V. Formally, we take the setting from (Hairer, 2010). The state
space 𝒮 is assumed to be a complete, separable metric space (Polish space), such as a finite or
countable space or R𝑛. It is equipped with its Borel 𝜎-algebra (the 𝜎-algebra generated by all
open sets). This guarantees that integration behaves as expected. 𝑃 (𝑠,d𝑠′) is assumed to be a
Markov kernel, namely, a measurable map from 𝒮 to probability measures over 𝒮.

Formalizing the RL problem in MDPs means assuming the Markov hypothesis: the next
state distribution 𝑃 (d𝑠′|𝑠, 𝑎) depends only on the current state 𝑠 and the current action 𝑎, but
not of past states or past actions. This setting does not cover many standard environments:
consider a car-racing environment in which the agent only observe the current frame. The
next state of the car depends not only on the observed position but on the current velocity,
which cannot be deduced from a single frame. Hence, the environment does not satisfy the
Markov hypothesis. The Partially Observable MDP setting (POMDP) (Sutton and Barto,
2018; Spaan, 2012) extends the MDP setting, by assuming the agent only observes a function
𝑜𝑡 := 𝑓(𝑠𝑡). In the car-racing example, the full state 𝑠𝑡 would contain both the current frame
and the current velocity, but the observation 𝑜𝑡 would only contain the current frame. Some
standard algorithms designed for MDPs can be applied in the POMDP setting via Recurrent
Neural Networks keeping a memory of past steps (Hausknecht and Stone, 2015). In this thesis,
we will only consider the MDP setting.

Policy The agent’s behavior in the environment is defined via its policy. Formally, a policy
𝜋(𝑎|𝑠) defines a probability distribution over the action space 𝒜 for every state 𝑠. If 𝑠0 ∈ 𝒮 is a
state, we say that 𝜏 is a trajectory is sampled from 𝑠0 with policy 𝜋 if 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, ...)
with, for all 𝑡 ⩾ 0: 𝑎𝑡 ∼ 𝜋(d𝑎|𝑠𝑡), 𝑟𝑡 ∼ ℛ(.|𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃 (d𝑠|𝑠𝑡, 𝑎𝑡). We will write 𝜏 ∼ P(𝜏 |𝑠0, 𝜋).

Discounted return For a trajectory 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, ...) we define the discounted
return 𝐺(𝜏) as:

𝐺(𝜏) :=
∑︁
𝑡⩾0

𝛾𝑡𝑟𝑡 (1.2.1)

The return of a trajectory represents the amount of reward earned for that trajectory. This
quantity is well-defined if the reward is bounded.

If 𝜌0(d𝑠0) is a distribution for initial states, we can define the expected discounted return
for policy 𝜋:

𝐽(𝜋) := E𝑠0∼𝜌0,𝜏∼P(𝜏 |𝑠0,𝜋)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑟𝑡

⎤⎦ (1.2.2)

Because the reward probability distribution only depends on the current state, we equivalently
have:

𝐽(𝜋) := E𝑠0∼𝜌0,𝜏∼P(𝜏 |𝑠0,𝜋)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅(𝑠𝑡)

⎤⎦ (1.2.3)

where the stochastic reward 𝑟𝑠 is replaced by its expectation 𝑅(𝑠) = E𝑟𝑠∼ℛ(.|𝑠)[𝑟𝑠].
The reinforcement learning problem is then to find the policy 𝜋* maximizing 𝐽(𝜋). Such a

policy exists (Sutton and Barto, 2018, Section 3.6).
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Value function The value function for policy 𝜋 in state 𝑠, 𝑉 𝜋(𝑠), is defined as the expected
discounted return for trajectories in ℳ starting from 𝑠:

𝑉 𝜋(𝑠) := E𝑎𝑡+1∼𝜋(.|𝑠𝑡),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡),𝑟𝑡∼ℛ(.|𝑠𝑡)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑟𝑡|𝑠0 = 𝑠

⎤⎦ (1.2.4)

The value function measures how much (discounted) reward the agent will gather by following
the policy 𝜋 starting from a state 𝑠. The problem of estimating the value function is called
policy evaluation, and is a necessary step for multiple algorithms. Policy evaluation will be the
main topic of Part IV in this thesis.

The expected discounted return with 𝜌0(d𝑠0) for initial distribution can be computed from
the value function as:

𝐽(𝜋) = E𝑠0∼𝜌0 [𝑉 𝜋(𝑠0)] (1.2.5)

where the stochastic reward 𝑟𝑠 is replaced by its expectation.
We say that a policy 𝜋1 dominates a policy 𝜋2 if, from every starting state, using 𝜋1 will

gather more reward than using 𝜋2: ∀𝑠 ∈ 𝒮 , 𝑉 𝜋1(𝑠) ⩾ 𝑉 𝜋2(𝑠) for every state 𝑠. In particular,
if 𝜋1 dominates 𝜋2, then 𝐽(𝜋1) ⩾ 𝐽(𝜋2). A policy 𝜋* is the optimal policy if, for every policy 𝜋,
𝜋* dominates 𝜋.

The action-value function 𝑄𝜋 Similarly, we can define the action-value function 𝑄𝜋(𝑠, 𝑎)
for every state-action (𝑠, 𝑎) ∈ 𝒮 ×𝒜 pair, as:

𝑄𝜋(𝑠, 𝑎) := E𝑎𝑡+1∼𝜋(.|𝑠𝑡),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡 ),𝑟𝑡∼ℛ(.|𝑠𝑡)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑟𝑡|𝑠0 = 𝑠, 𝑎0 = 𝑎

⎤⎦ (1.2.6)

= E𝑎𝑡+1∼𝜋(.|𝑠𝑡),𝑠𝑡+1∼𝑃 (.|𝑠𝑡,𝑎𝑡 )

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅(𝑠𝑡)|𝑠0 = 𝑠, 𝑎0 = 𝑎

⎤⎦ (1.2.7)

The action-value function measures how much (discounted) reward the agent will gather by
following the policy 𝜋 starting from a state 𝑠 and doing action 𝑎. The value function can be
computed from the 𝑄 function as:

𝑉 𝜋(𝑠) = E𝑎∼𝜋(𝑎|𝑠) [𝑄𝜋(𝑠, 𝑎)] (1.2.8)

Markov Reward Process Ifℳ is a MDP and 𝜋 a fixed policy, we can define a corresponding
Markov Reward Process (MRP). Informally, a MRP is a Markov Process, in which we additionally
get a scalar reward at every step. We define the transition probability operator for policy 𝜋:
𝑃𝜋(d𝑠′|𝑠) =

∫︀
𝑎
𝜋(d𝑎|𝑠)𝑃 (d𝑠′|𝑠, 𝑎). The MRP for policy 𝜋 is defined as ℳ𝜋 := ⟨𝒮, 𝑃𝜋,ℛ, 𝛾⟩. A

trajectory 𝜏 in the MRP is a sequence (𝑠0, 𝑟0, 𝑠1, 𝑟1, ...). The expected discounted return for
policy 𝐽(𝜋), or the value function 𝑉 𝜋, does not depend on actions, and are well-defined in the
setting of MRPs. Therefore, when we describe algorithms for policy evaluation, we will use the
MRP formalization for simplicity: it allows simplifying the notations when the policy is fixed.

1.3 Model based reinforcement learning

A first family of RL approach are model-based approach. Informally, the algorithms are usually
two-steps: first, estimate a model 𝑃 (𝑠′|𝑠, 𝑎) of the transition probability operator, and a model
�̂�(𝑠) of the reward. Then, find a policy optimally solving the estimated environment 𝑃 . Such
an approach allows answering the question: What would happen if I perform this action in this
state?. This approach is especially relevant in some settings:

• The tabular setting: In finite environment, it is possible to estimate 𝑃 by storing a
matrix 𝑃 , and estimating it online by counting transitions. This setting has been studied
a lot (Jaksch et al., 2010; Azar et al., 2017; Pananjady and Wainwright, 2019).
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• Optimal control: An other similar setting is optimal control. In that setting, the model
is usually supposed to be known from external knowledge, from a physics analysis of the
environment (Bertsekas, 2012).

In the general MDP setting, in continuous state spaces, it is possible to learn a model 𝑃 with
function approximations: we define a parametric family of model 𝑃𝜃(d𝑠′|𝑠, 𝑎), and optimize the
parameter 𝜃 such that 𝑃𝜃 ≈ 𝑃 . With the model 𝑃𝜃, it is possible to sample artificial trajectories
(sometimes called dream trajectories (Ha and Schmidhuber, 2018)): for every starting state 𝑠0
and sequence of actions (𝑎0, 𝑎1, ...), we can sample trajectories 𝜏 = (𝑠0, 𝑠1, ...) with 𝑠0 := 𝑠0, and
𝑠𝑡+1 ∼ 𝑃𝜃(.|𝑠𝑡, 𝑎𝑡), and consider the estimated return �̃�((𝑎0, 𝑎1, ...)) = E𝑠1,𝑠2,...

[︁∑︀
𝑡⩾0 𝛾

𝑡𝑅(𝑠𝑡)
]︁

(here, we assume for simplicity we know the reward function 𝑅(𝑠)).
If a sufficiently good model is found, it is possible to do planning : from a starting state 𝑠,

we can select the next real actions performed in the environment by finding the best sequence
of action in the estimated environment: finding argmax𝑎0,𝑎1,... �̃�((𝑎0, 𝑎1, ...)).

Model based methods were used successfully in several cases in Deep RL context, for example
for board games with MuZero (Schrittwieser et al., 2020), control (Ebert et al., 2018; Nagabandi
et al., 2018), or some video games (Ha and Schmidhuber, 2018; Racanière et al., 2017).

Some of the main technical difficulties of model-based RL are the following:

• Even with an accurate model, planning can be complex. Indeed, it requires maximizing
argmax𝑎0,𝑎1,... �̃�((𝑎0, 𝑎1, ...)). If the action space 𝒜 is finite, and if we only compute the
argmax for 𝑇 steps, the number of possible sequences still grows as 𝑂(|𝒜|𝑇 ). Moreover,
if the environment is stochastic, it might be necessary to sample multiple trajectories for
every sequence of actions, because of variance.

• Learning an accurate model is hard. Moreover, because of compounding errors, if 𝑃𝜃 is
slightly wrong, the prediction at step 𝑇 sampled according to 𝑃𝑇𝜃 might be completely
incorrect. In such case, planning might be a wrong strategy.

In this thesis, we will only study model-free algorithms. In Part IV, we will study the
successor states operator, which can be understood as a intermediate object between model-
based and model-free: it does not allow to predict the next step, but it predicts a distribution
over states representing the future of the trajectory. We now present standard methods for
model-free RL, such as policy gradient, actor critic, and Q-learning.

1.4 Policy evaluation

Finding the optimal policy means maximizing the value function 𝑉 𝜋(𝑠) (as a function of 𝜋) for
all state. Hence, we would like to estimate this quantity. This step is sometimes called policy
evaluation. Informally, many algorithm iterate between two steps:

1. Evaluate the current policy 𝜋, by estimating 𝑉 𝜋(𝑠) or 𝑄𝜋(𝑠, 𝑎)

2. Improve the policy in order to select more often actions 𝑎 with high action-value function
𝑄(𝑠, 𝑎), or to spend more time in states with higher value 𝑉 (𝑠). Then, go back to step 1.

Hence, policy evaluation is a crucial step towards policy optimization. In this section, we will
present some of the most important techniques for policy evaluation.

If the state space 𝒮 is finite, we can use a tabular estimate: store a vector 𝑉 (𝑠) of values
for every state. If 𝒮 is a continuous state space, storing all the values is not possible anymore.
In that case, we define a parametric model 𝑉𝜃(𝑠) (typically a neural network), where 𝜃 ∈ Θ
is the parameter vector. The goal is then to find a parameter 𝜃* which minimizes the error
‖𝑉𝜃* − 𝑉 𝜋‖, for a given metric ‖.‖.

In this text, we will only consider methods which can be used with any function approxi-
mation. We only assume we are able to compute values 𝑉𝜃(𝑠) for every input 𝑠, as well as the
derivatives 𝜕𝜃𝑉𝜃(𝑠) for every input 𝑠.
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1.4.1 Monte-Carlo approach for policy evaluation

The first approach for policy evaluation is the Monte Carlo estimation (Sutton and Barto, 2018).
Assume we are able to interact with the environment to sample trajectories 𝜏 = (𝑠0, 𝑟0, 𝑠1, 𝑟1, ...),
sampled by using the policy 𝜋 in the environment. Then, 𝐺(𝜏) =

∑︀
𝑡⩾0 𝛾

𝑡𝑟𝑡 is an unbiased
estimate of 𝑉 𝜋(𝑠0). If 𝑉𝜃(𝑠) is our current approximation of the value function, we can define
the stochastic update ̂︀𝛿𝜃(𝜏) on the parameter 𝜃

̂︀𝛿𝜃(𝜏) := 𝜕𝜃 (𝑉𝜃(𝑠0)−𝐺(𝜏))2 (1.4.1)

Then, we can update 𝜃 with 𝜃𝑡+1 := 𝜃𝑡− 𝜂𝑡 ̂︀𝛿𝜃(𝜏𝑡). This translates the policy evaluation problem
into a supervised learning problem: each trajectory going through a state 𝑠 gives a sample of
𝑉 𝜋(𝑠).

One of the main limitation of this approach is its variance. Estimating the value function of
a state with a Monte-Carlo approach requires a lot of trajectories going through that state, as
the algorithm does not generalize between states, except via the inductive bias of the function
approximation. A more sample efficient method can be obtained by leveraging the structure of
the value function, through the Bellman equation.

1.4.2 Temporal Difference algorithm

The value function at state 𝑠 can be related to the value function at the next state via the
Bellman equation. Here is an informal derivation of this relation:

𝑉 𝜋(𝑠) = E𝜏=(𝑠0,𝑠1,𝑠2,...)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅(𝑠𝑡)|𝑠0 = 𝑠

⎤⎦
= 𝑅(𝑠) + 𝛾E𝜏=(𝑠0,𝑠1,...)∼ℳ𝜋

⎡⎣∑︁
𝑡⩾1

𝛾𝑡𝑅(𝑠𝑡)|𝑠0 = 𝑠

⎤⎦
= 𝑅(𝑠) + 𝛾E𝑠′∼𝑃𝜋(.|𝑠)

⎡⎣E𝜏=(𝑠2,...)∼ℳ𝜋

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅(𝑠𝑡)|𝑠0 = 𝑠′

⎤⎦⎤⎦
= 𝑅(𝑠) + 𝛾E𝑠′∼𝑃𝜋(.|𝑠) [𝑉 𝜋(𝑠′)] (1.4.2)

The result is formalized in the following proposition. This result is well-known (Jaakkola
et al., 1994), and we don’t not give formal details in this chapter. Still, we formalized this
statement, as some of our theorems in this thesis can be interpreted as extensions of this
proposition. This remark also applies to the next proposition. We denote by 𝐵(𝒮) the set of
bounded measurable functions on 𝒮:

Proposition 1.1. Let 𝑇 be the Bellman operator on 𝐵(𝒮) defined as:

(𝑇 · 𝑉 )(𝑠) = 𝑅(𝑠) + 𝛾E𝑠′∼𝑃𝜋(.|𝑠) [𝑉 (𝑠′)] (1.4.3)

Then, 𝑇 is 𝛾-contractive, and its unique fixed point is the true value function 𝑉 𝜋. In particular,
for any initial value 𝑉0, the sequence defined as 𝑉𝑡+1 := 𝑇 · 𝑉𝑡 converges to 𝑉 𝜋.

We know that for any 𝑉0, the sequence defined as 𝑉𝑡+1 := 𝑇 · 𝑉𝑡 converge to 𝑉 𝜋. We now
want to approximate this sequence with function approximations. The strategy is the following:
If 𝑉𝜃 is a current estimate of 𝑉 𝜋, we consider 𝑉 tar = 𝑅+ 𝛾𝑃𝑉𝜃, a target estimate for V defined
via the Bellman equation, and we move 𝜃 in order to move 𝑉𝜃 closer to 𝑉 tar. The temporal
difference update obtained with that strategy is defined in the following proposition (which is
also well-known), which also formalizes that this estimate is unbiased :
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Proposition 1.2. Let 𝑉𝜃 be a current estimate of 𝑉 𝜋. Consider 𝑉 tar = 𝑅+ 𝛾𝑃𝑉𝜃, a target
estimate for V defined via the Bellman equation.

Let (𝑠, 𝑟, 𝑠′) be a sample of the environment such that 𝑠 ∼ 𝜌 (where 𝜌 is a probability
distribution over states), 𝑟 ∼ ℛ(.|𝑠) and 𝑠′ ∼ 𝑃 (𝑠′|𝑠). We define ̂︀𝛿𝜃TD(𝑠, 𝑟, 𝑠

′) as:

̂︀𝛿𝜃TD(𝑠, 𝑟, 𝑠
′) := 𝜕𝜃

1

2
(𝑉𝜃(𝑠)− (𝑟 + 𝛾𝑉𝜃(𝑠

′))2 (1.4.4)

= 𝜕𝜃𝑉𝜃(𝑠)(𝑉𝜃(𝑠)− 𝑟 − 𝛾𝑉𝜃(𝑠′)) (1.4.5)

where 𝜃 = 𝜃 but is not differentiated through 𝜕𝜃. Then ̂︀𝛿𝜃TD is an unbiased estimate of the
Bellman error:

E𝑠∼𝜌,𝑟∼ℛ(.|𝑠),𝑠′∼𝑃 (𝑠,d𝑠′)

[︁ ̂︀𝛿𝜃TD(𝑠, 𝑟, 𝑠
′)
]︁
=

1

2
𝜕𝜃‖𝑉𝜃 − 𝑉 tar‖2𝜌 (1.4.6)

where the norm ‖.‖𝜌 is defined as ‖𝑓‖2𝜌 := E𝑠∼𝜌
[︀
𝑓2(𝑠)

]︀
. In particular, the true value function

𝑉 𝜋 is a fixed point of this update: if 𝑉𝜃 = 𝑉 𝜋, then E
[︁ ̂︀𝛿𝜃TD

]︁
= 0.

With Proposition 1.2, we can now define an algorithm for policy evaluation with function
approximations: When observing (𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1) at step 𝑡, we define 𝜃𝑡+1 := 𝜃𝑡−𝜂 ̂︀𝛿𝜃(𝑠, 𝑟, 𝑠′). This
strategy to derive algorithms is more general, and will be used many times in this thesis in
Parts IV and V. We now describe more generally this strategy.

A general strategy to derive unbiased algorithm We are interested about unbiased
algorithms, as such methods have some interesting theoretical properties. Here, we briefly
present in the case of value functions, what we mean with unbiased methods in this text:

• First, we define an operator 𝑇 on 𝐵(𝒮) the space of functions over the state space 𝒮,
such that its iterates are guarantee to converge to the true value function 𝑉 𝜋: for any
initialization 𝑉0 ∈ 𝐵(𝒮), if we define the sequence 𝑉𝑡+1 := 𝑇 · 𝑉𝑡, we have 𝑉𝑡 →𝑡→∞ 𝑉 𝜋.
Moreover, we want 𝑉 𝜋 to be the only fixed point of the operator 𝑇 in 𝐵(𝒮).

• Then, we approximate the sequence 𝑉𝑡 with function approximation. Let 𝜃𝑡 be our current
parameter at step 𝑡. We define 𝜃𝑡+1 := 𝜃𝑡−𝜂 ̂︀𝛿𝜃, where ̂︀𝛿𝜃 is a stochastic update computed
with a currently observed trajectory/observation/transition. We require the algorithm to
be unbiased, which means that the expected update E[ ̂︀𝛿𝜃] (where the expectation is with
respect to the observed trajectory/observation/transition) is a gradient step towards the
target 𝑉 tar := 𝑇 · 𝑉𝜃𝑡 :

E[ ̂︀𝛿𝜃] = 𝜕𝜃‖𝑉𝜃 − 𝑉 tar‖2 (1.4.7)

where ‖.‖ is a given norm.

The Monte-Carlo approach described in Section 1.4.1 is a trivial case of this approach, with
𝑇 the constant operator 𝑇 · 𝑉 := 𝑉 𝜋 for every 𝑉 . The TD approach defined in Section 1.4.2
also corresponds to this strategy with 𝑇 the Bellman operator.

There is no general guarantee to converge to 𝑉 𝜋. Our theoretical guarantee is that with
such an algorithm, 𝑉 𝜋 is a fixed point. Indeed, if there is 𝜃* such that 𝑉𝜃* = 𝑉 𝜋, then at 𝜃 = 𝜃*

we have 𝑉 tar = 𝑇 · 𝑉 𝜋 = 𝑉 𝜋, hence 𝜃* is already minimizing the distance ‖𝑉𝜃 − 𝑉 tar‖ and the
expected update at 𝜃 = 𝜃* is E[ ̂︀𝛿𝜃] = 0.

Moreover, if the parametric family 𝑉𝜃 is overparametrized1, then 𝑉 𝜋 is the unique fixed
point of the algorithm. In practice, the overparametrized hypothesis is not satisfied, except in
the tabular setting, but as we use highly expressive deep learning models, the overparametrized
setting is a relevant viewpoint.

1Here, we say that the parametric family 𝑉𝜃 is overparametrized if the function 𝜃 ↦→ 𝑉𝜃 is surjective from Θ
to 𝐵(𝒮), and if for every 𝜃, the map 𝜕𝜃𝑉𝜃 is surjective for any 𝜃
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TD(𝑛) and TD(𝜆) The TD update defined in Proposition 1.2 is called TD with 1-step: it
estimates the value at step 𝑡 using the value estimate at step 𝑡 + 1. This approach can be
generalized to TD with 𝑛-step: when observing a sub-trajectory (𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑟𝑡+1, ..., 𝑠𝑡+𝑛), we
can define a target estimate with 𝑛-step as:

𝑉tar = 𝑟𝑡 + 𝛾𝑟𝑡+1 + ...+ 𝛾𝑛−1𝑟𝑡+𝑛−1 + 𝛾𝑛𝑉𝜃(𝑠𝑡+𝑛), (1.4.8)

then use this value to obtain a value update:

̂︀𝛿𝜃TD(𝑛)(𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑟𝑡+1, ..., 𝑠𝑡+𝑛) := 𝜕𝜃
1

2
(𝑉𝜃(𝑠)− 𝑉tar)2 (1.4.9)

= 𝜕𝜃𝑉𝜃(𝑠)
(︀
𝑉𝜃(𝑠)−

(︀
𝑟𝑡 + 𝛾𝑟𝑡+1 + ...+ 𝛾𝑛−1𝑟𝑡+𝑛−1 + 𝛾𝑛𝑉𝜃(𝑠𝑡+𝑛)

)︀)︀
(1.4.10)

The update ̂︀𝛿𝜃TD(𝑛) is an unbiased estimate of the 𝑛-step Bellman. If 𝑇 is the Bellman operator
defined in Proposition 1.1, then we define, 𝑉 tar := 𝑇𝑛 ·𝑉𝜃 = 𝑇 ·...·𝑇 ·𝑉 =

∑︀𝑛−1
𝑡=0 𝛾

𝑡𝑃 𝑡𝑅+𝛾𝑛𝑃𝑛𝑉𝜃,

E
[︁ ̂︀𝛿𝜃TD(𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑟𝑡+1, ..., 𝑠𝑡+𝑛)

]︁
=

1

2
𝜕𝜃‖𝑉𝜃 − 𝑉 tar‖2𝜌 (1.4.11)

When increasing 𝑛, the variance of the update ̂︀𝛿𝜃TD(𝑛) increases, but the expected target
𝑉 tar := 𝑇𝑛 · 𝑉𝜃 gets closer to the true value function 𝑉 𝜋. Taking the limit 𝑛 =∞, the target
is exactly the value function, and ̂︀𝛿𝜃TD(𝑛) corresponds to the Monte-Carlo update defined
in Section 1.4.1.

We now introduce briefly TD(𝜆), and its forward and backward views. Assume we have
access to an infinite trajectory 𝜏 = (𝑠0, 𝑟0, 𝑠1, 𝑟1, ...). Then, we can update the value of 𝑠0 with
all TD(𝑛) updates for all 𝑛 ⩾ 1, using a geometric averaging of these updates:

̂︀𝛿𝜃TD(𝜆)(𝜏) = (1− 𝜆)
∑︁
𝑛⩾1

𝜆𝑛−1 ̂︀𝛿𝜃TD(𝑛)(𝑠0, 𝑟0, 𝑠1, 𝑟1, ..., 𝑠𝑛) (1.4.12)

This update is the forward view of TD(𝜆) (Sutton and Barto, 2018, Section 12.1), and can
be understood as a mixture of updates with low variance (𝑛 low) and updates with a higher
variance but a more accurate target (large 𝑛). In practice, we don’t observe infinite trajectories,
and truncate the sum in equation (1.4.12).

There is an backward view of TD(𝜆), via eligibility traces (Sutton and Barto, 2018,
Section 12.2). Consider for simplicity a finite environment. We observing a trajectory,
𝜏 = (𝑠0, 𝑟0, 𝑠1, 𝑟1, ...), we update online an eligibility traces vector 𝑒𝑡(𝑠) with: 𝑒0(𝑠) = 0
for all states, and at step 𝑡:

𝑒𝑡 ← 𝛾𝜆𝑒𝑡−1 (1.4.13)
𝑒𝑡(𝑠𝑡)← 𝑒𝑡(𝑠𝑡) + 1 (1.4.14)

Hence, 𝑒𝑡 is the empirical discounted measure of observed state in the current trajectory. Then,
the TD(𝜆) algorithm via eligibility traces updates the value function as:

𝑉𝑡+1 := 𝑉𝑡 + 𝜂𝑡𝑒𝑡(𝑉𝜃(𝑠𝑡)− 𝑟𝑡 − 𝛾𝑉𝜃(𝑠𝑡+1)) (1.4.15)

This update propagates the Bellman error to all states observed in the past. In can be
used in a true online setting, but is equivalent in expectation to the forward view defined in
Equation (1.4.12) (van Seijen et al., 2016). The TD(𝜆) algorithm with eligibility traces will be
discussed in Chapter 12.

1.5 Policy gradient and Actor-Critic algorithms

Knowing how to evaluate a policy, we will now describe policy improvement algorithms. We
first describe policy gradient methods. With these methods, we consider a parametric policy
𝜋𝜃𝜋 (𝑎|𝑠), where 𝜃𝜋 ∈ Θ𝜋 is a vector parameter. The goal is the to find 𝜃𝜋 maximizing 𝐽(𝜋𝜃𝜋 ).
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The main difficulty is that we cannot compute easily the gradient 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋). Computing
that gradient means estimating: If I change my policy slightly, how would my trajectory evolve?
However, we are not able to answer that question. One of the reason is that we don’t have
access to the transition operator 𝑃 , and can’t know precisely what would happen if we behave
differently.

Evolution strategies We know how to estimate 𝐽(𝜋𝜃𝜋 ) for every 𝜃𝜋, by sampling trajectories
with policy 𝜋𝜃𝜋 . Therefore, it is possible to use Evolution Strategies (ES), a class of black
box optimization algorithms (Beyer and Schwefel, 2004; Sun et al., 2009). Informally, in
many Evaluation Strategies (such as CMAES (Hansen, 2016)) the principle is to approximate
a gradient descent-like method, by estimating multiple parameters 𝜃𝜋1, ..., 𝜃𝜋𝑘 in the same
neighbourhood, then deduce from this estimate a direction for improvement. These methods
have been used in Reinforcement Learning (Salimans et al., 2017; Ha and Schmidhuber, 2018).
Still, an issue of these methods is that the number of trajectories required to learn roughly scales
with the number of parameters. Hence, for complex environments requiring large architecture,
the number of parameter will become a limitation.

REINFORCE and the policy gradient theorem The policy gradient algorithms are a
way to leverage the structure of the RL problem in order to estimate the gradient 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋 ),
only using estimates of 𝐽(𝜋𝜃𝜋) and the gradient of the probability (or the log-probability) of
choosing action 𝑎 in state 𝑠: 𝜕𝜃𝜋𝜋𝜃𝜋 (𝑎|𝑠). We can use the following relation (Williams, 1992):

𝜕𝜃𝜋𝐽(𝜋𝜃𝜋 ) = E𝑠∼𝜈𝜋,𝑎∼𝜋𝜃𝜋 (.|𝑠),𝜏∼P(𝜏 |𝑠,𝑎) [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠)𝐺(𝜏)] (1.5.1)

where 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, ...) ∼ P(𝜏 |𝑠0) if 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡), and where 𝜈𝜋(d𝑠) is
the discounted occupancy measure starting from 𝜌0(d𝑠). For finite state space2, 𝜈𝜋 is defined
as:

𝜈𝜋(𝑠) = (1− 𝛾)E𝑠0∼𝜌0
∑︁
𝑡⩾0

𝛾𝑡P(𝑆𝑡 = 𝑠|𝑠0 = 𝑠) (1.5.2)

Therefore, it is possible to define an unbiased estimate of the policy-gradient. The update
defined by estimating equation (1.5.1) defines the REINFORCE algorithm (Sutton et al., 2000).
Similarly to our discussion on policy evaluation, 𝐺(𝜏) has high variance, hence the REINFORCE
algorithm has high variance. Another viewpoint on this issue is with credit-assignment : when
observing a trajectory 𝜏 with high (resp. low) return, REINFORCE propagates the information
uniformly to every actions, increasing (resp. decreasing) the probability of choosing this action.
Understanding which action caused the high/low return would allow to improve the policy
faster. We now present the actor-critic algorithm, which uses estimates of the value-function to
tackle the credit assignment problem, and reduce the policy gradient estimate variance, to the
cost of bias introduced by the error between the true value function and the current estimate.

Actor-Critic We now consider actor-critic methods. We both learn an actor network 𝜋𝜃𝜋 ,
and a critic. Here, we will consider learning only the value function 𝑉𝜃(𝑠). The first technique to
reduce variance is to use a baseline. If 𝑏(𝑠) (called a baseline) is a function of states which does
not depend on action, we can show that: E𝑠∼𝜈𝜋,𝑎∼𝜋𝜃𝜋 (.|𝑠),𝜏∼P(𝜏 |𝑠,𝑎) [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠) 𝑏(𝑠)] = 0.
We use 𝑏(𝑠) = 𝑉 𝜋(𝑠), and, we can estimate the policy gradient as:

𝜕𝜃𝜋𝐽(𝜋𝜃𝜋 ) = E𝑠∼𝜈𝜋,𝑎∼𝜋𝜃𝜋 (.|𝑠),𝜏∼P(𝜏 |𝑠,𝑎) [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠) (𝐺(𝜏)− 𝑉 𝜋(𝑠))] (1.5.3)

Moreover we have:

E𝑎∼𝜋𝜃𝜋 (.|𝑠),𝑠′∼𝑃 (.|𝑠,𝑎),𝜏∼P(𝜏 |𝑠,𝑎) [𝐺(𝜏)] = E𝑎∼𝜋𝜃𝜋 (.|𝑠),𝑠′∼𝑃 (.|𝑠,𝑎) [𝑅(𝑠) + 𝛾𝑉 𝜋(𝑠′)] (1.5.4)

By plugging (1.5.4) into (1.5.3), we obtain the following proposition, which is well-known (Sutton
et al., 2000). Similarly to the previous statements, we do not give all mathematical details

2A formal definition of 𝜈𝜋 for general (continuous) state spaces can also be given, and is related to the
successor state operator studied in Part IV.
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and a proof, but state this proposition, in order to show the similarities with other formal
statements in this thesis.

Proposition 1.3. Let (𝑠, 𝑎, 𝑟, 𝑠′) be a sample of the environment such that 𝑠 ∼ 𝜈𝜋, 𝑎 ∼
𝜋(.|𝑠), 𝑟 ∼ ℛ(.|𝑠), and 𝑠′ ∼ 𝑃 (.|𝑠, 𝑎). We define ̂︀𝛿𝜃AC(𝑠, 𝑎, 𝑟, 𝑠

′) as:

̂︀𝛿𝜃AC(𝑠, 𝑎, 𝑟, 𝑠
′) := log 𝜋𝜃𝜋 (𝑎|𝑠) (𝑟𝑠 + 𝛾𝑉 𝜋(𝑠′)− 𝑉 𝜋(𝑠)) (1.5.5)

Then, ̂︀𝛿𝜃AC is an unbiased policy gradient update:

E𝑠∼𝜈𝜋,𝑎∼𝜋𝜃𝜋 (.|𝑠),𝑠′∼𝑃 (.|𝑠,𝑎)

[︁ ̂︀𝛿𝜃AC(𝑠, 𝑎, 𝑟, 𝑠
′)
]︁
= 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋 ) (1.5.6)

The actor-critic update ̂︀𝛿𝜃AC(𝑠, 𝑎, 𝑟, 𝑠
′) is on-policy : it requires that the action 𝑎 is sampled

according to the current policy 𝜋 to be unbiased. Hence, once a transition is used for an update
and the policy changed, the transition cannot be used again. More recent policy gradient
approaches (Schulman et al., 2015, 2017) partly relax this constraint, if the current policy is
still reasonably close to the policy used to obtain the transition.

1.6 Q-learning methods

We now present Q-learning methods. Its principle is slightly different from policy gradient
approaches. Instead of learning an estimate 𝑉 𝜋 of the current policy 𝜋, it directly estimate
the optimal Q-function 𝑄* := 𝑄𝜋

*
, where 𝜋* is the optimal policy. Once we know 𝑄*, we

can easily obtain the optimal policy as 𝜋*(.|𝑠) = argmax𝑎𝑄
*(𝑠, 𝑎). One of the advantages of

Q-learning methods is that they are off-policy: they can learn from trajectories sampled from a
policy different from the current policy. Q-learning methods use the optimal Bellman equation,
formalized in the following statement (Jaakkola et al., 1994):

Proposition 1.4. Let 𝑇 be the operator on 𝐵(𝒮 ×𝒜) defined as:

(𝑇 ·𝑄)(𝑠, 𝑎) = 𝑅(𝑠) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎) max
𝑎′

𝑄(𝑠′, 𝑎′) (1.6.1)

Then, 𝑇 is 𝛾-contractive and its unique fixed point in 𝐵(𝒮 ×𝒜) is the optimal 𝑄 function
𝑄*. In particular, for any initial value 𝑄0 ∈ 𝐵(𝒮 ×𝒜), the sequence defined as 𝑄𝑡+1 := 𝑇 ·𝑄𝑡
converges to 𝑄*.

As for policy evaluation, we can now approximate the sequence 𝑄𝑡 with function approxi-
mations. The following theorem is a well-known fact, and is formalized in order to show the
similarity with our methods. If the action space is finite, it corresponds to the Deep-Q Network
algorithm (Mnih et al., 2013), and can be adapted with continuous action with DDPG (Lillicrap
et al., 2016).

Proposition 1.5. Let 𝑄𝜃(𝑠, 𝑎) be a current estimate of 𝑄*, we define 𝑄tar := (𝑇 · 𝑄𝜃) =
𝑅+ 𝛾E𝑠′∼ max𝑎′ 𝑄(𝑠′, 𝑎′).

Let (𝑠, 𝑎, 𝑟, 𝑠′) be a sample of the environment such that 𝑠 ∼ 𝜌expl, 𝑟 ∼ ℛ(.|𝑠), 𝑎 ∼ 𝜋expl, 𝑠′ ∼
𝑃 (.|𝑠, 𝑎), where 𝜋expl is can be any policy, and is called the exploration policy. We definê︀𝛿𝜃DQN(𝑠, 𝑎, 𝑟, 𝑠

′) as:

̂︀𝛿𝜃DQN(𝑠, 𝑎, 𝑟, 𝑠
′) :=

1

2
𝜕𝜃

(︁
𝑄𝜃(𝑠, 𝑎)− 𝑟 − 𝛾max

𝑎′
𝑄𝜃(𝑠

′, 𝑎′)
)︁2

(1.6.2)

= (𝜕𝜃𝑄𝜃(𝑠, 𝑎))×
(︁
𝑄𝜃(𝑠, 𝑎)− 𝑟 − 𝛾max

𝑎′
𝑄𝜃(𝑠

′, 𝑎′)
)︁

(1.6.3)

Then ̂︀𝛿𝜃 is an unbiased estimate of the Bellman error:

E
[︁ ̂︀𝛿𝜃DQN(𝑠, 𝑎, 𝑟, 𝑠

′)
]︁
=

1

2
𝜕𝜃‖𝑄𝜃 −𝑄tar‖expl (1.6.4)
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where the norm ‖.‖expl is defined as ‖𝑓(𝑠, 𝑎)‖expl = E𝑠∼𝜌expl,𝑎∼𝜋expl(.|𝑠)
[︀
𝑓(𝑠, 𝑎)2

]︀
.

In particular, the true optimal Q-function 𝑄* is a fixed point of this update: if 𝑄𝜃 = 𝑄*,
then E

[︁ ̂︀𝛿𝜃DQN(𝑠, 𝑎, 𝑟, 𝑠
′)
]︁
= 0.

In this chapter, we introduced the main algorithms for Reinforcement Learning, as well as
some of their properties which will be linked to our work in this thesis. In the next chapter, we
will give an overview of the content of this thesis, highlighting our main contributions.





Chapter 2

An overview of this thesis

In this chapter, we give an overview of this thesis. We give a summary of every chapter,
highlighting our main contributions. In Section 2.1, corresponding to Chapter 3, we present an
information theory viewpoint on the complexity of deep learning models. Then, in Section 2.2,
corresponding to Part III, we present two published papers, both developing mathematical tools
for robustness in deep RL. The first one (Chapter 4) describes Alrao (All learning rates at once)
an optimization method, not specific to RL, but designed to work in many setting, including
non-stationary RL problems, without hyperparameter tuning. The second one (Chapter 5)
studies near continuous-time environments, and show how to design robust algorithms in that
setting. Section 2.3 corresponds to Part IV (Chapters 6-12) and present our work on the
successor state operator, for policy evaluation. Finally, Section 2.4 corresponds to Part V
(Chapter 13-17) and present how we applied tools developed for the successor state operator to
the setting of multi-goal reinforcement learning.

2.1 The description length of deep learning models

In Chapter 3, we present the following published paper:

Blier, L. and Ollivier, Y. (2018). The description length of deep learning models.
In Advances in Neural Information Processing Systems

This was the first of this thesis. Its story is worth mentioning. As I was starting to work
with Yann Ollivier, he asked me to read about the information theory viewpoint (Solomonoff
inference, Minimum Description Length) for machine learning.

In information theory and Minimum Description Length (MDL), learning a good model
of the data is recast as using the model to losslessly transmit the data in as few bits as
possible. Consider an image classification setting with a dataset (for example CIFAR10)
𝒟 = {(𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁 )} where the 𝑥𝑖 are the images and the 𝑦𝑖 are the labels. The
classification problem is recast as follows: Alice has the entire dataset 𝒟, but Bob only has
the images {𝑥1, ..., 𝑥𝑁}, and Alice wants to transmit the labels. The first possibility is to
directly send a file containing the labels {𝑦1, ..., 𝑦𝑁} without leveraging the fact that Bob has
the images. But it is possible to do better, by sending a model predicting the labels from the
images, together with the list of errors of the model. A more complex model might make less
errors, hence compress the data more, but the model must be transmitted as well. The overall
codelength can be understood as a combination of quality-of-fit of the model (compressed data
length), together with the cost of encoding (transmitting) the model itself. The MDL viewpoint
is that the best model is the model achieving the best trade-off between complexity and accuracy
of the model, measured with compression bounds.

MDL is based on Occam’s razor, and on Chaitin’s hypothesis that “comprehension is
compression” (Chaitin, 2007): any regularity in the data can be exploited both to compress it
and to make predictions. This is ultimately rooted in Solomonoff’s general theory of inference

23
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(Solomonoff, 1964), whose principle is to favor models that correspond to the “shortest program”
to produce the training data, based on its Kolmogorov complexity (Li and Vitányi, 2008). If no
structure is present in the data, no compression to a shorter program is possible.

After a few weeks reading about these topics, I came back to Yann. I told him that while
this viewpoint is elegant, it is obviously wrong : indeed, the hypothesis is that the best model for
prediction is also the best model for compression. But the success of deep learning proves that
this is untrue. I took the classification problem introduced above, with the example of CIFAR10.
In that case, the baseline for compression is encoding directly the labels of the dataset, without
any model using the images, which costs 𝑁 × log2(Number of classes) = 50, 000 × log2 10 =
166 kbits. This means that the MDL viewpoint would only select a model if it is able to encode
the labels with less than 166 kbits. But the best model for prediction on that dataset are
deep learning models with millions of parameters, and encoding the dataset with such a model
requires taking into account the cost of encoding the model weights in a way. The conclusion
was quite clear to me: it is impossible to encode a dataset of 166 kbits using a model with
millions of parameters, hence: The success of deep learning proves that the MDL viewpoint is
wrong, and that the best model for prediction are not the best models for compression. Yann did
not agree with my conclusion, and told me that it was actually possible to compress such a
dataset with a large model, even taking into account the cost of encoding the weights, using
variational techniques introduced by (Hinton and Van Camp, 1993). I went back home, and
tried to think of other ways to encode a dataset with a deep learning model.

It turned out we were both wrong (but to be honest, especially me): it is actually possible to
compress the labels of a dataset like CIFAR10 in less than 166 kbits (we reached 35 kbits) with
a state-of-the-art network (in our case with a VGG19 which has more than 10M parameters),
but not with variational methods.

We now describe our contributions. First, we study variational methods for deep learning.

• We show that the traditional method to estimate MDL codelengths in deep learning,
variational inference (Hinton and Van Camp, 1993), yields surprisingly inefficient code-
lengths for deep models, despite explicitly minimizing this criterion. This might explain
why variational inference as a regularization method often does not reach optimal test
performance.

This contribution applies for standard variational techniques used while we were working on this
project (Blei et al., 2017), but could be different for more recent techniques such as normalizing
flows (Rezende and Mohamed, 2015; Kobyzev et al., 2020).

Then, we introduce new practical ways to compute tight compression bounds in deep learning
models, based on the MDL toolbox (Grünwald, 2007):

• We show that prequential coding on top of standard learning, yields much better code-
lengths than variational inference, correlating better with test set performance. Thus,
despite their many parameters, deep learning models do compress the data well, even
when accounting for the cost of describing the model.

The principle of prequential code is the following: First, Alice sends to Bob the description of a
network architecture and an optimization algorithm (which is only a few lines of code), and a
file containing the first 100 labels of the dataset. Then, Alice and Bob both train the network
with these 100 labels. Alice can now use this trained network as a model (which will not be
very accurate) to encode 100 next labels. Now they both have 200 labels and can train a better
model, which will be used for the next 100 labels. As more labels are transmitted, the model
becomes more accurate and sending more labels is less expensive. This compression scheme
leverages the generalization ability of deep learning networks, even with very limited datasets.
These introduced techniques lead to the main contribution of this work:

• Deep learning models, even with a large number of parameters, compress the data well:
from an information theory point of view, the number of parameters is not an obstacle
to compression. This is consistent with Chaitin’s hypothesis that “comprehension is
compression”.
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Finally, prequential codes also lead to a model selection strategy:

• With prequential codes, we obtain a model selection strategy, suitable for a deep learning
framework, not using cross validation, hence useful for small datasets settings. This
technique was especially used for probing in NLP (Voita and Titov, 2020).

2.2 Mathematical approaches towards robustness in Deep
Reinforcement Learning

In this Section, we introduce two published papers developing mathematical tools for robustness
in deep reinforcement learning. First, All learning rates at once (Alrao) is an optimization
method, not specific to RL, but designed to work in many setting, including non-stationary
RL problems, without hyperparameter tuning. The second one studies near continuous-time
environments, such as continuous control environments, many video games, ... It first shows
that standard approaches such as DQN, DQQPG fail to learn in that setting when the time
discretization decreases (or equivalently the number of action/observation per second increases),
and then show how to design robust algorithms in that setting.

2.2.1 Learning with all learning rates at once
In Chapter 4, we present the published paper, which is joint work with Pierre Wolinski and
Yann Ollivier:

Blier, L., Wolinski, P., and Ollivier, Y. (2019). Learning with Random Learning
Rates. In ECML PKDD 2019 - European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases

This project started from discussions on how to design a learning system able both to adapt
very quickly to new observed patterns, but also to learn complex patterns which might require
a slow learning. I was starting to work in Reinforcement Learning at that time. In RL, the
learning setting is non-stationary : the distribution of observations can change while the agent
is improving its policy, and the learning methods has to be able to adapt to all of these regimes.
My co-author Pierre Wolinski was interested in topics in AutoML (Guyon et al., 2016). From
this viewpoint, a learning system has to be able to adapt to multiple learning settings without
any hyperparameter tuning, such as settings which would require small or large learning rates.
Many methods were designed to directly set optimal per-parameter learning rates (Tieleman
and Hinton, 2012; Kingma and Ba, 2015), such as the popular Adam optimizer, but they still
require some hyperparameter tuning.

This discussion lead to the idea of a learning system which would be a mixture of slow
learning units, and fast learning units.

• We implemented this idea directly in deep learning models, by using different learning
rates for different neurons, sampled across multiple order of magnitudes, hence leveraging
redundancy in the network. We call this method All Learning Rates At Once algorithm
(Alrao).

Alrao departs from the usual philosophy of trying to find the “right” learning rates; instead we
take advantage of the overparameterization of network-based models to produce a diversity of
behaviors from which good network outputs can be built.

We then experiment Alrao in multiple settings. Experimentally, we were interested to see
if Alrao was working out-of-the-box, without any hyperparameter tuning, and how it would
compare to SGD with an optimally selected learning rate.

• Surprisingly, Alrao does manage to learn well over a range of problems from image
classification, text prediction, and reinforcement learning. In our tests, Alrao’s performance
is always close to that of SGD with the optimal learning rate, without any tuning. Alrao
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combines performance with robustness: not a single run failed to learn with the default
learning rate range we used. In contrast, our parameter-free baseline, Adam with default
hyperparameters, is not reliable across the board.

2.2.2 Making Deep Q-learning methods robust to time discretization
In Chapter 5, we present the published paper:

Tallec, C., Blier, L., and Ollivier, Y. (2019). Making Deep Q-learning methods
robust to time discretization. In ICML 2019 - Thirty-sixth International Conference
on Machine Learning

In this paper we study the sensitivity of Deep Reinforcement Learning (DRL) techniques
to time discretization, such as what happens when an agent receives 50 observations and is
expected to take 50 actions per second instead of 10. In principle, decreasing time discretization,
or equivalently shortening reaction time, should only improve agent performance. Robustness
to time discretization is especially relevant in near-continuous environments, which includes
most continuous control environments, robotics, and many video games.

This work is a contribution to the problem of robustness of DRL techniques. Despite the
impressive results of DRL techniques in a variety of domains (Silver et al., 2017; OpenAI,
2018b; Mnih et al., 2015; OpenAI, 2018a), these approaches are sensitive to a number of factors,
including hyperparameterization, implementation details or small changes in the environment
parameters (Henderson et al., 2017; Zhang et al., 2018). This sensitivity, along with sample
inefficiency, largely prevents DRL from being applied in real world settings. Notably, high
sensitivity to environment parameters prevents transfer from imperfect simulators to real world
scenarios. In this work, the goal is to mitigate one of these sensitivity factors: the time
discretization.

Our first contribution is to show that standard approaches based on estimation of state-action
value functions, such as Deep 𝑄-learning (DQN, Mnih et al. 2015) and Deep deterministic policy
gradient (DDPG, Lillicrap et al. 2015) are not at all robust to changes in time discretization:

• We show experimentally that when the time discretization decreases in standard environ-
ment, DQN and DDPG are unable to learn at all.

Intuitively, as the discretization timestep decreases, the effect of individual actions on the total
return decreases too: 𝑄*(𝑠, 𝑎) is the value of playing action 𝑎 then playing optimally, and if 𝑎
is only maintained for a very short time its advantage over other actions will be accordingly
small. If the discretization timestep becomes infinitesimal, the effect of every individual action
vanishes. Hence, the 𝑄-function 𝑄(𝑠, 𝑎)) collapses to the value function 𝑉 (𝑠) and does not bear
any information on the ranking of actions. We say that there is no continuous-time 𝑄-function.

• Building on (Baird, 1994), we formalize these statement, in the framework of continuous-
time RL, and show that there is no continuous-time 𝑄-function, hence the poor perfor-
mance of 𝑄-learning with small time steps (Theorem 5.2). More precisely, Thus that
standard 𝑄-learning is ill-behaved in this setting.

We then looked for an algorithm that would be as invariant as possible to changing the
discretization timestep. Such an algorithm should remain viable when this timestep is small,
and in particular admit a continuous-time limit when the discretization timestep goes to 0. This
leads to the algorithm Deep Advantage Updating (Algorithm 4). Our first contributions are to
show that while there is no continuous 𝑄-function, there is a continuous advantage function,
which is possible to learn.:

• First, we formally show that while the𝑄-function𝑄𝛿𝑡 collapses when the time discretization
𝛿𝑡→ 0, the rescaled advantage:

𝐴𝛿𝑡(𝑠, 𝑎) =
𝑄𝛿𝑡(𝑠, 𝑎)− 𝑉𝛿𝑡(𝑠)

𝛿𝑡
(2.2.1)

converge to a continuous time limit advantage function 𝐴(𝑠, 𝑎) (Theorem 5.3).



2.3. POLICY EVALUATION VIA THE SUCCESSOR STATES OPERATOR 27

• We then learn together models of the value function 𝑉 (𝑠) and the continuous time limit
advantage function 𝐴(𝑠, 𝑎). We formally show that there are Bellman equations on 𝑉
and 𝐴, and we use it for policy optimization, with the Deep Advantage Updating (DAU)
algorithm.

In order to define a time-discretization invariant algorithm, it is also necessary to define an
invariant exploration strategy:

• We formally show that an 𝜀-greedy exploration strategy collapse to no exploration at all
when the time-discretization goes to 0 (Theorem 5.4).

• We derive a time-discretization invariant exploration scheme, both for discrete and
continuous actions.

The principle is the following, inspired by Lillicrap et al. (2016) in the case of continuous actions,
and extended to deterministic actions. For continuous actions, if 𝑎𝑡 = 𝜋(𝑠𝑡) is the action
selected by the current deterministic policy 𝜋 at step 𝑡, we actually perform action �̃�𝑡 := 𝑎𝑡+ 𝑧𝑡,
where 𝑧𝑡 is a time-discretization invariant random process defined via an Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930).

Finally, we also show how we can define a time-discretization invariant optimization proce-
dure:

• We show that with a SGD algorithm, the learning rate needs to be of order 𝑂(𝛿𝑡). If it
is larger, the algorithm will diverge, if it is smaller, the parameters stay at their initial
values (Theorem 5.5).

We then provide experiments comparing DQN or DPPG to DAU:

• We empirically show that standard 𝑄-learning methods are not robust to changes in time
discretization in continuous control environments (Brockman et al., 2016), exhibiting
degraded performance, while our algorithm demonstrates substantial robustness.

2.3 Policy evaluation via the successor states operator

In Part IV, we present our work on policy evaluation via the successor states operator. This
part is mainly based on the following preprint, with improved and additional results:

Blier, L., Tallec, C., and Ollivier, Y. (2021). Learning successor states and
goal-dependent values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123

In an environment with a very sparse reward, learning the value function as described in
Section 1.4.2 is a hard problem. At the beginning of training, no learning will occur until
a reward is observed. This highlight the fact that not all the observed information is used.
Leveraging this information might lead to better sample efficiency.

The successor state operator of a Markov reward process is an object that expresses the
value functions of all possible reward functions for a given, fixed policy. Here we offer a formal
treatment of these objects in both finite and continuous spaces. We present several learning
algorithms and associated results. There are multiple motivations for this approach:

First, learning the successor state operator is done without reward signals and extracts
information from every observed transition, illustrating an unsupervised reinforcement learning
approach. Successor state lie in between model-free and model-based reinforcement learning
approaches, providing a representation of the future of a state without having to synthesize
future states or unrolling synthetic trajectories.

Then, successor states exploit multiple relationships between how to reach different states.
Similarly to the value function, it satisfies a Bellman equation. Additionally, it also satisfies two
other fixed point equations: a backward Bellman equation and a Bellman–Newton equation,
expressing path compositionality in the Markov process. These new relation allow us to
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Figure 2.1: A learned successor states with function approximation in a maze. We represent the
successor measure 𝑀(𝑠, 𝑠′), where the state 𝑠 marked in red is the starting state. The arrows
represent doors which can only be passed in one direction.

generalize from observed trajectories in several ways, potentially leading to more sample
efficiency.

Finally, the study of the successor states operator and its algorithms allow us to derive,
in Section 2.4, unbiased methods in the setting of multi-goal RL, dealing with the issue of
extremely sparse rewards.

2.3.1 The successor states operator
The successor state operator 𝑀𝜋(𝑠,d𝑠′) of a Markov reward process is an object that linearly
transforms a reward function into the corresponding value function. In particular, it expresses
the value functions of all possible reward functions for a given, fixed policy. For finite spaces,
the entries 𝑀𝑠𝑠′ of the successor state matrix describe the expected discounted time spent in
state 𝑠′ by a trajectory starting at 𝑠 Dayan (1993) (see Figure 2.1):

𝑀𝜋
𝑠𝑠′ =

∑︁
𝑡⩾0

𝛾𝑡P(𝑆𝑡 = 𝑠′|𝑆0 = 𝑠) (2.3.1)

Equivalently:

𝑀𝜋
𝑠𝑠′ = E𝑎𝑡∼𝜋(𝑎|𝑠𝑡),𝑠𝑡+1∼𝑃 (𝑠′|𝑠𝑡,𝑎𝑡)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡1𝑠𝑡=𝑠′ |𝑠0 = 𝑠

⎤⎦ . (2.3.2)

The entry 𝑀𝑠𝑠′ is also the value function at 𝑠 if the reward is 1 at 𝑠′ and 0 everywhere else. As
such, 𝑀 contains the information about reaching every state in the environment, not just those
states providing a reward.

For a fixed policy 𝜋, the value function 𝑉 𝜋 depends linearly on the reward: in a finite
state space, for any reward function, represented as a vector 𝑅 over states, its associated value
function is

𝑉 𝜋(𝑠) = (𝑀𝜋𝑅) (𝑠) =
∑︁
𝑠2

𝑀𝜋
𝑠𝑠2𝑅𝑠2 . (2.3.3)

This equation will allow us to derive policy evaluation algorithms via successor states. First,
we will estimate models of the successor state operator 𝑀𝜋. As 𝑀𝜋 does not depend on the
reward, we can learn it in an unsupervised way, without observing any reward. Contrary to
standard value function learning algorithms, the algorithm can start to learn before observing
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any reward. Then, we can use the successor states model to compute a model of the value
function once the reward function is observed, using (2.3.3).

In the following, we study how to learn a model of the successor state operator and how to
use it. In finite environments with tabular models, this was studied by Dayan (1993), and we
will extend this principle to general continuous state spaces, with function approximators. In
Chapter 6, we introduce the successor states operator, and its proper definitions of in continuous
state space:

• We formally define the successor states operator in general state spaces (Theorem 6.1),
extending the discrete case of Dayan (1993). For continuous states, this involves some
measure theory: the successor state operator defines for every state 𝑠 a measure over
successor states 𝑠′:

𝑀𝜋(𝑠,d𝑠′) = (Id−𝛾𝑃 )−1(𝑠,d𝑠′) =
∑︁
𝑡⩾0

𝛾𝑡(𝑃𝜋)𝑡(𝑠,d𝑠′) (2.3.4)

We relate the value function 𝑉 𝜋 to the successor states operator 𝑀𝜋 and the reward 𝑅 in
general state spaces (Proposition 6.3) via:

𝑉 𝜋(𝑠) = (𝑀𝜋 ·𝑅)(𝑠) =
∫︁
𝑠2

𝑀𝜋(𝑠,d𝑠2)𝑅(𝑠2) (2.3.5)

We then describe how to represent the successor operator 𝑀𝜋(𝑠,d𝑠′) with function approxima-
tors, as a density 𝑚𝜃(𝑠, 𝑠

′) with respect to a reference measure 𝜙(d𝑠′):

𝑀𝜃(𝑠,d𝑠
′) := 𝑚𝜃(𝑠, 𝑠

′)𝜌(d𝑠′) (2.3.6)

The reference measure 𝜌 is a probability distribution, such that we are able to sample 𝑠 ∼ 𝜌.
We do not require more knowledge on 𝜌, such as knowing its probability density function, ...
Typically, 𝜌 can be the distribution of states observed along trajectories sampled with 𝜋 with
an initial state 𝑠0 ∼ 𝜌0. Unless specified, there are no hypothesis on 𝜌. For 𝑚𝜃(𝑠1, 𝑠2), we can
use any parametric family of functions. In practice, we will use deep learning models.

The successor states operator is related but not equivalent to successor features (Kulkarni
et al., 2016; Borsa et al., 2018; Barreto et al., 2018; Zhang et al., 2017b; Hansen et al., 2020).
Given a feature function 𝜙 over the state space 𝒮, the successor feature is the expectation of
the cumulated, discounted future values of 𝜙 given the starting point 𝑠0 of a trajectory (𝑠𝑡) is

E

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝜙(𝑠𝑡)

⎤⎦ =
∑︁
𝑡⩾0

𝛾𝑡(𝑃 𝑡𝜙)(𝑠0) = (𝑀𝜙)(𝑠0). (2.3.7)

Thus, the successor representation of a state 𝑠 is obtained by applying 𝑀 to some user-chosen
function 𝜙: 𝑀𝜋 · 𝜙. In practice the function 𝜙 is learned together with the successor feature.
Still, in order to prevent convergence to the trivial solution 𝜙 = 0, an additional loss (such as
pixel reconstruction) has to be added. On the contrary, the successor states operator does not
depend on a given function 𝜙, and can be learned without adding any information independent
of the dynamic.

The next steps are then to describe how this density model 𝑚𝜃(𝑠, 𝑠
′) can be learned, and

used for policy evaluation.

2.3.2 TD algorithms for deep successor states
Once the successor states operator is properly defined, the goal is now to learn it. We consider a
model 𝑀𝜃(𝑠1,d𝑠2) := 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) parameterized by its density 𝑚𝜃(𝑠1, 𝑠2) with respect to
a measure 𝜌, as introduced previously. In Chapter 7, we derive a temporal difference algorithm
for learning 𝑚𝜃(𝑠1, 𝑠2). We extend the standard temporal difference approach with function
approximators described in Section 1.4.2 to the successor state.

Following this strategy, our first contribution is define such an operator 𝑇 for the successor
state operator:
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• We define the (forward) Bellman operator for successor operators:

𝑇 ·𝑀 := Id+𝛾𝑃 ·𝑀, (2.3.8)

which corresponds to the standard Bellman equation for value functions, but for successor
states.

We show that that the Bellman operator is 𝛾-contractive, and that its unique fixed point
is the true successor states operator 𝑀𝜋 (Theorem 7.1 and Proposition 7.2).

Once such an operator is defined, we can derive a stochastic Temporal Difference estimate for
successor states:

• We define the stochastic update ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2), where we assume (𝑠, 𝑠′) is a transition

observed in the Markov Process and 𝑠2 is an independent state. The update is:

̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2) := 𝜕𝜃𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)) (2.3.9)

We then define the corresponding Forward TD algorithm for successor states operator
(Algorithm 8): informally, at step 𝑡, if our current parameter is 𝜃𝑡, when observing a
transition (𝑠𝑡, 𝑠

′
𝑡) in the environment, we sample 𝑠2 ∼ 𝜌 and define:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 ̂︀𝛿𝜃F-TD(𝑠𝑡, 𝑠
′
𝑡, 𝑠2) (2.3.10)

We prove that ̂︀𝛿𝜃F-TD is an unbiased estimate of the Bellman error (Theorem 7.5): if we
define the target 𝑀 tar := 𝑇 ·𝑀𝜃 = Id+𝛾𝑃 ·𝑀𝜃, we have:

E𝑠,𝑠′,𝑠2
[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠

′, 𝑠2)
]︁
=

1

2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2 (2.3.11)

where formal definition of the probability laws in the expectation, and of the norm ‖.‖
are given in the corresponding sections.

The strategy used here is similar to standard policy evaluation for the value function with
function approximations described in Section 1.4.2, and will be used to derive many algorithms
in this thesis: First, we define a contractive operator 𝑇 such that its unique fixed point is
𝑀𝜋. Hence, for any initialization 𝑀0(𝑠,d𝑠

′), if we define the sequence 𝑀𝑡+1 := 𝑇 ·𝑀𝑡, we
have 𝑀𝑡 →𝑡→∞ 𝑀𝜋. Then, we approximate the sequence 𝑀𝑡 with function approximation.
We define a model 𝑀𝜃(𝑠,d𝑠

′) = 𝑚𝜃(𝑠, 𝑠
′)𝜌(d𝑠′) as introduced above. When observing a

trajectory/observation/transition, we compute a stochastic update ̂︀𝛿𝜃, such that it is an
unbiased gradient step towards the target 𝑀 tar := 𝑇 ·𝑀𝜃𝑡 : E[ ̂︀𝛿𝜃] = 1

2𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2, and we
update 𝜃 with 𝜃𝑡+1 := 𝜃𝑡 − 𝜂 ̂︀𝛿𝜃.

As explained for 𝑉 -function in Section 1.4.2, with such an algorithm, 𝑀𝜋 is guaranteed to
be a fixed point: if there is 𝜃* such that 𝑀𝜃* =𝑀𝜋, then E[ ̂︀𝛿𝜃] = 0. Moreover, if the parametric
family 𝑀𝜃 is overparametrized then 𝑀𝜋 is the unique fixed point of the algorithm.

Experimentally, we demonstrate that we are able to approximate the successor states
operator in simple continuous environments with the Forward TD algorithm, with deep neural
networks.

We know that several variants of TD are used in practice for learning the value function.
We derive similar variants in the context of successor states operator:

• We show how to compute an unbiased forward temporal difference update with an
additional target network (Theorem 7.6).

• We define a 𝑇𝐷(𝑛) update ̂︀𝛿𝜃TD(𝑛) for the successor states operator. Similarly to the
forward TD update, the TD(𝑛) update is an unbiased estimate of the 𝑛-step Bellman
error (Theorem 7.7).
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• We show how to define and learn the successor state-action operator 𝑀𝜋(𝑠, 𝑎,d𝑠′), which
takes into account the first action (similarly to the 𝑄 function) (Definition 7.13, Theo-
rems 7.14 and 7.15).

Forward Temporal Difference for successor states corresponds to standard Temporal Difference
for the value function, but on the successor states operator. We will now present new algorithms
for learning the successor states operator, without any equivalent for the value function,
leveraging the additional information contained in the object.

2.3.3 The Backward Temporal Difference Algorithm

Informally, the forward TD algorithm is using that, for every target state 𝑠tar, if we observe a
transition 𝑠→ 𝑠′ (hence 𝑠 and 𝑠′ are close to each other), then their value functions must be
close. In this section, we present the backward temporal difference algorithm, which is using the
opposite point of view: for every starting state 𝑠start, if we observe a transition 𝑠→ 𝑠′, then
the value function of 𝑠start if the reward is localized in 𝑠 must be close to the value function of
the same state 𝑠start if the reward is localized in 𝑠′.

Similarly to forward Temporal Difference, this relation can be formalized as a fixed point
equation over the successor states operator:

• We define the backward Bellman operator for successor states operator as:

𝑀 ↦→ Id+𝛾𝑀 · 𝑃 (2.3.12)

We show that this operator is 𝛾-contractive and that its unique fixed point is the true
successor states operator 𝑀𝜋 (Theorem 8.1 and Proposition 8.2).

Once this operator is defined, we obtain a algorithm for function approximators similarly to
forward temporal difference:

• We define the stochastic update ̂︀𝛿𝜃B-TD(𝑠2, 𝑠, 𝑠
′), where we assume (𝑠, 𝑠′) is a transition

observed in the Markov Process and 𝑠1 is a state sampled independently. We then define
the corresponding Backward TD algorithm for successor states operator.

We prove that ̂︀𝛿𝜃B-TD is an unbiased estimate of the backward Bellman error (Theo-
rem 8.3).

Finally, we analyze the backward TD algorithm from the backward process viewpoint. In-
formally, if 𝑃 is the transition matrix of a Markov process, the backward process is the
process corresponding to (infinite) trajectories (..., 𝑠−2, 𝑠−1, 𝑠0, 𝑠1, 𝑠2, ...) in the reversed order
(..., 𝑠2, 𝑠1, 𝑠0, 𝑠−1, 𝑠−2, ...). Viewing the backward TD algorithm from this viewpoint lead to the
following contribution:

• We show that the backward TD update on operators is equivalent to the forward TD
update applied to the backward process (Theorem 8.5).

While the updates ̂︀𝛿𝜃B-TD and ̂︀𝛿𝜃F-TD are not equal, there is therefore a strong relation between
them. Still, the forward TD update has an equivalent update on the value function while the
backward TD update does not. In the next section, we introduce second-order methods for
successor states operator learning.

2.3.4 Second-order methods for successor states

The Bellman–Newton operator and path concatenation In order to introduce our
second-order approaches, let us first give an interpretation of 𝑀𝜋, forward and backward TD
in terms of paths in the environment. In the finite environment case, we can express 𝑀𝜋

𝑠𝑠′ as a
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Figure 2.2: Combining paths: forward TD, backward TD, and path composition (Bellman–
Newton).

sum over all paths from 𝑠 to 𝑠′ in the environment

𝑀𝜋
𝑠𝑠′ = (Id−𝛾𝑃𝜋)−1

𝑠1𝑠2 =
∑︁
𝑡⩾0

𝛾𝑡(𝑃𝜋)𝑡𝑠1𝑠2

=
∑︁
𝑡⩾0

𝛾𝑡
∑︁

path(𝑠0,𝑠1,...,𝑠𝑡)
with 𝑠0=𝑠 and 𝑠𝑡=𝑠

′

𝑃𝜋𝑠0𝑠1𝑃
𝜋
𝑠1𝑠2 ...𝑃

𝜋
𝑠𝑡−1𝑠𝑡 . =

∑︁
𝑝 path from

𝑠 to 𝑠′

𝛾length(𝑝)P(𝑝)

where P((𝑠0, ..., 𝑠𝑡)) = 𝑃𝜋𝑠0𝑠1 ...𝑃
𝜋
𝑠𝑡−1𝑠𝑡 . Therefore, 𝑀𝜋

𝑠𝑠′ is the sum of all paths from 𝑠 to 𝑠′,
discounted by their length, and weighted by their probabilities.

From this viewpoint, we can give an other interpretation of forward and backward TD: When
a transition 𝑠→ 𝑠′ is observed, for every target state 𝑠tar forward TD builds new paths from 𝑠
to 𝑠tar by concatenating the transition (𝑠, 𝑠′) to all known paths from 𝑠′ to 𝑠tar (Figure 2.2,
left). On the contrary, when 𝑠→ 𝑠′ is observed, for every starting state 𝑠start, backward TD
builds new paths from 𝑠start to 𝑠′ by concatenating all known paths from 𝑠start to 𝑠 with the
transition (𝑠, 𝑠′) (Figure 2.2, middle).

This discussion naturally leads to a third algorithm: when observing a transition (𝑠, 𝑠′), it is
possible to build new path from any starting point 𝑠start to any target state 𝑠tar by concatenating
all paths from 𝑠start to 𝑠, to the transition (𝑠, 𝑠′), to all paths from 𝑠tar (Figure 2.2, right).
Informally, instead of increasing the length of all known paths by 1 at every step, this would
double the length of all known paths at every step.

In Chapter 9, we define the Bellman-Newton equation and the corresponding algorithm,
corresponding the path composition strategy defined above:

• We define the Bellman-Newton operator:

𝑀 ↦→ 2𝑀 −𝑀 · (Id−𝛾𝑃𝜋) ·𝑀 (2.3.13)

and show that the true successor states operator 𝑀𝜋 is a fixed point of the Bellman–
Newton operator (Proposition 9.4).

We show that the update defined via the Bellman–Newton equation 𝑀𝑡+1 := 2𝑀𝑡 −
𝑀𝑡 · (Id−𝛾𝑃𝜋) ·𝑀𝑡 corresponds to the path concatenation strategy described above
(Theorem 9.6). It also corresponds to the Newton method for matrix inversion (Pan and
Schreiber, 1991), which explains the name given to the Bellman Newton method method.

Using the Bellman–Newton operator, we then define a Bellman–Newton update for successor
states with function approximation:

• We define the stochastic update ̂︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠
′, 𝑠2), where we assume (𝑠, 𝑠′) is a transition

observed in the Markov Process and 𝑠1 and 𝑠2 are states sampled independently. We
then define the corresponding Bellman–Newton algorithm for successor states operator
(Algorithm 9).

We prove that ̂︀𝛿𝜃BN is an unbiased estimate of the Bellman–Newton error (Theorem 9.5).

Experimentally, this update raises multiple issues. First, values of 𝑚(𝑠1, 𝑠2) can reach
several order of magnitudes. Typically, when 𝑠1 ≈ 𝑠2 the values can go to infinity, but be of
order 𝑂(1) in every other cases, and these two regimes needs to be learned accurately (this first
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issue is shared by every algorithm learning the successor state operator). Then, the updatê︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠
′, 𝑠2) requires the sampling of one transition (𝑠, 𝑠′), and two additional states 𝑠1

and 𝑠2. On the contrary, Forward TD and Backward TD only require the sampling of a single
additional state. Hence, the Bellman–Newton update has a variance. Finally, it is known that
Newton’s methods can be numerically unstable. Hence, the high variance becomes important,
as the method can diverge. To counterbalance this variance, we can use smaller learning rates,
but this reduces the efficiency of the method.

These issues makes a vanilla implementation of the Bellman–Newton algorithm not efficient
in continuous environments with function approximations. In Chapter 11 introduced below, we
present a possible solution to this issue, via low-rank parametrization. We will see that this
approach allow us to reduce variance, and still be close to a Bellman–Newton approach in some
cases.

Still, we prove that in tabular cases, the Bellman–Newton algorithm approximates the process
estimation algorithm (Theorem 9.2), defined as follows: in a tabular setting, we can learn
an estimate 𝑃 of the transition matrix 𝑃𝜋 by keeping a frequency matrix of every transition
starting from every state. Then, we can define an estimate of 𝑀𝜋 as �̂� := (Id−𝛾𝑃 )−1.
If we also learn �̂� a model of the reward, we can define a model of the value function as
𝑉 := �̂��̂�. This algorithm trivially converges to 𝑀𝜋 and 𝑉 𝜋 when the number of samples
goes to infinity, because the matrix inverse is continuous. It corresponds to the Least Squares
Temporal Difference algorithm in the literature (Bradtke and Barto, 1996).

This strategy is only possible in the tabular setting, and has no direct equivalent in the
function approximation setting. Indeed, in a continuous environment, if we learn a model
𝑃𝜃(𝑠1,d𝑠2) of the transition operator, we can’t directly compute the inverse (Id−𝛾𝑃 )−1. Using
a continuous model 𝑃𝜃(𝑠1,d𝑠2) would still be possible, for instance by sampling trajectories
according to 𝑃𝜃. This is related to model-based methods, and has known technical issues,
discussed in Section 1.3.

• In the tabular setting, the Bellman–Newton algorithm approximates the process estimation
algorithm (Theorem 9.2), while never estimating the process directly.

In the next Section, we study theoretically the convergence properties of the process estimation
algorithm.

2.3.5 A non-asymptotic convergence bound for policy evaluation via
process estimation

In order to better understand how much the Bellman–Newton algorithm can potentially improve
the sample efficiency of policy evaluation, we study in more details in Chapter 10 the tabular
case.

We therefore study the sample efficiency of policy evaluation with the process estimation
algorithm, which corresponds to the LSTD algorithm (Bradtke and Barto, 1996) in its very
specific tabular case. We consider the i.i.d data model: we assume the process is ergodic and has
an invariant measure 𝜌. Then, we observe independent transitions (𝑠𝑡, 𝑟𝑡, 𝑠

′
𝑡) of the environment

such that 𝑠𝑡 ∼ 𝜌, 𝑟𝑡 ∼ ℛ(.|𝑠𝑡), 𝑠′𝑡 ∼ 𝑃 (.|𝑠𝑡), and we consider the 𝐿1(𝜌) norm on 𝒮 defined as
‖𝑓‖𝐿1(𝜌) =

∑︀
𝑠∈𝒮 𝜌(𝑠)|𝑓(𝑠)|. We also assume that the reward 𝑟 is bounded by 𝑅max.

We consider the process estimation algorithm defined in the previous section: we learn 𝑃𝑡
as a frequency matrix: 𝑃𝑡 =

𝑛𝑠𝑠′
𝑛𝑠

where 𝑛𝑠𝑠′ is the number of times the transition (𝑠, 𝑠′) was
observed, and 𝑛𝑠 =

∑︀
𝑠2
𝑛𝑠𝑠2 . Similarly, we learn �̂�𝑡 as �̂�𝑡(𝑠) = 1

𝑛𝑠

∑︀
𝑘⩽𝑡|𝑠𝑘=𝑠 𝑟𝑘. Then, we

estimate the value function as 𝑉𝑡 = (Id−𝛾𝑃𝑡)−1�̂�𝑡. This estimate clearly converges to the true
value function 𝑉 𝜋, as 𝑃𝑡 → 𝑃𝜋, �̂�𝑡 → 𝑅 almost surely, and the inverse is continuous. We are
interested into measuring the sample efficiency of this approach.

We provide a convergence bound on 𝑉𝑡 with the process estimation algorithm for the 𝐿1(𝜌)
norm. The most interesting feature this new convergence bound is that it does not depend
on the number of states, or of the measure of infrequently visited states. Hence the result is
non-vacuous even if some states are almost-never observed, or for a very large number of states,
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or even for a discrete infinite state space. Up to our knowledge, it is the first convergence bound
for policy evaluation which shows that we can provably learn the value function in finite time,
even with an arbitrarily large (or infinite) state space. This is a desirable result: if a state 𝑠
is almost never observed for the measure 𝜌, an estimate 𝑉 (𝑠) will clearly be inaccurate, but
because we consider the 𝐿1(𝜌) or 𝐿2(𝜌) norms which weights the error in state 𝑠 with 𝜌𝑠, this
error is 𝑠 should be controlled.

We use the following quantity Λ𝑡(𝜌𝑃 ), introduced by Cohen et al. (2020) in the context of
discrete distribution learning:

Λ𝑡(𝜌𝑃 ) :=
∑︁

(𝑠,𝑠′)|𝜌𝑠𝑃𝑠𝑠′<1/𝑡

𝜌𝑠𝑃𝑠𝑠′ +
1√
𝑡

∑︁
(𝑠,𝑠′)|𝜌𝑠𝑃𝑠𝑠′⩾1/𝑡

√︀
𝜌𝑠𝑃𝑠𝑠′ (2.3.14)

The sequence Λ𝑡(𝜌𝑃 ) is decreasing when 𝑡 increases. We easily have Λ𝑡(𝜌𝑃 ) ⩾ 1√
𝑡
. Moreover,

if 𝒮 is finite, then we have Λ𝑡(𝜌𝑃 ) ⩽
√︁

𝐸
𝑡 where 𝐸 is the number of edge in the graph ((𝑠, 𝑠′)

is an edge if 𝑃𝜋𝑠𝑠′ > 0). The equality corresponds to an environment in which the probability
distribution 𝑃 (.|𝑠) is uniform for every state 𝑠. More generally, the quantity Λ𝑡(𝜌𝑃 ) is lower if
when the distribution is short tail. Interestingly, the quantity Λ𝑡(𝜌𝑃 ) is still well defined when
𝒮 is infinite, and can handle a large number of states with low probability.

• We consider the process estimate 𝑃𝑡 defined above, obtained by keeping a frequency
matrix of every transition starting from every state, and similarly a tabular model �̂�𝑡
of the reward. We define the value estimate as 𝑉𝑡 := (Id−𝛾𝑃 )−1�̂�𝑡. Then, after 𝑡 i.i.d.
observations (𝑠∼ 𝜌, 𝑠′ ∼ 𝑃𝑠𝑠′), we have with probability 1− 𝛿 (Theorem 10.2):

‖𝑉𝑡(𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽
𝑅max

(1− 𝛾)2

⎛⎝10Λ𝑡(𝜌𝑃 ) + 9

√︃
log 4

𝛿

𝑡

⎞⎠ (2.3.15)

For a finite environment, we can use that Λ𝑡(𝜌𝑃 ) ⩽
√︁

𝐸
𝑡 and the bound corresponds to

‖𝑉𝑡(𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽
𝑅max

(1− 𝛾)2
√
𝑡

(︃
10
√
𝐸 + 9

√︂
log

4

𝛿

)︃
. (2.3.16)

We compare these convergence to known results for policy evaluation. In particular, we consider
the results from Bhandari et al. (2018) for Temporal Difference for the norm 𝐿2(𝜌) under the
same i.i.d observation model, and the results from Pananjady and Wainwright (2019), for an
algorithm equivalent to SSIPE (called the plug-in in their work), for the 𝐿∞ norm, under the
synchronous observation model (at every step, a transition from every state is observed).

From these comparisons, our bounds raises a few interesting properties. First, they are
remarkably simple, and only depend on 𝛾, 𝑅max, and the number of edges in the graph (or
Λ𝑡(𝜌𝑃 )). Then, it is, to our knowledge the first bound for policy evaluation, for i.i.d. (or
trajectory) data, which is non-vacuous even when some states are hardly ever visited (𝜌(𝑠) is
very small), or when the number of states goes to infinity.

2.3.6 Matrix Factorization and the Forward-Backward parametriza-
tion

Finally, we get back to continuous environments, and study a specific parametric model for
the successor state operator, in order to mitigate the variance issue of the Bellman–Newton
method. We consider the model 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) with the particular choice:

𝑚𝜃(𝑠1, 𝑠2) = ⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩ =
𝑟∑︁
𝑖=1

(𝐹𝜃𝐹 (𝑠1))𝑖 (𝐵𝜃𝐵 (𝑠2))𝑖 (2.3.17)
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where 𝐹 : 𝑆 → R𝑟 and 𝐵 : 𝑆 → R𝑟 are two learnable functions from the state space to some
representation space R𝑟, parameterized by 𝜃 = (𝜃𝐹 , 𝜃𝐵). This provides an approximation of 𝑀
by a rank-𝑟 operator. Such a factorization is used for instance in (Schaul et al., 2015) for the
goal-dependent 𝑄-function (up to the factor 𝜌). Intuitively, 𝐹 is a “forward ” representation
of states and 𝐵 a “backward ” representation: if the future of 𝑠1 matches the past of 𝑠2, then
𝑀(𝑠1,d𝑠2) is large.

The forward-TD and backward-TD algorithms introduced above can be directly applied
to the FB parametrization, simply by considering 𝑚𝜃(𝑠1, 𝑠2) as any function approximator.
Actually, it is also possible to mix the forward and backward updates: if we consider 𝜃𝐵 as
fixed, we can use the forward or backward TD algorithms on the model 𝜃𝐹 ↦→ ⟨𝐹𝜃𝐹 (.), 𝐵𝜃𝐵 (.)⟩.
This defines forward and backward updates for 𝐹𝜃𝐹 , and we can define similarly forward
and backward updates for 𝐵𝜃𝐵 . We can then mix these updates and use independently a
forward/backward update for 𝐹 and a potentially different update for 𝐵𝜃𝐵 .

• We define the mixed algorithms forward-forward, forward-backward, backward-forward
and backward-backward for the FB parametrization. We show that the true successor
state operator 𝑀𝜋 is a fixed point of every of these four algorithms (Theorem ref11.1).

We then study in more details the forward-backward algorithm. Indeed, this algorithm has
two interesting properties. The first one is about variance. We learn online estimates Σ̂𝐹
and Σ̂𝐵 of the 𝑟 × 𝑟 covariance matrices Σ𝐹 and Σ𝐵 defined as Σ𝐹 := E𝑠1∼𝜌𝐹 (𝑠1)𝐹 (𝑠1)⊤
and Σ𝐵 := E𝑠1∼𝜌𝐵(𝑠1)𝐵(𝑠1)

⊤, for example by computing a moving average of the matrices
𝐹 (𝑠)𝐹 (𝑠)⊤ for every observed state. Then, we define a FB update with reduced variance:

• Knowing estimates Σ̂𝐹 and Σ̂𝐵 of Σ𝐹 and Σ𝐵 , we define an update ̂︀𝛿𝜃fb-TD(𝑠, 𝑠
′, Σ̂𝐹 , Σ̂𝐵),

where (𝑠, 𝑠′) is supposed to be an observed transition in the process (Algorithm 10).

Contrary to the Forward or Backward TD algorithm defined for any model 𝑚𝜃, this
update does not require the sampling of an additional state 𝑠2.

We prove that, if we our estimates of the covariance matrices are correct (Σ̃𝐹 = Σ𝐹
and Σ̃𝐵 = Σ𝐵), the update ̂︀𝛿𝜃fb-TD is an unbiased estimate of the Forward Bellman
error gradient for 𝐹 and of the Backward Bellman error for 𝐵, but with lower variance
(Theorem 11.2).

The second interesting property is a relation between the fixed points of this method and
the SVD. We know that the optimal low-rank approximation of an operator for the 𝐿2 norm
corresponds to a truncated SVD. We have the following result:

• We show that the fixed point of the forward-backward TD algorithm are truncated SVDs
of rank 𝑟 of the true successor states operator 𝑀𝜋 for the norm 𝐿2(𝜌) (Theorem 11.3).

This statement is necessary but not sufficient to show that the algorithm will converge to the
optimal low-rank representation. In practice, we observe that this algorithm converges to the
optimal low-rank representation of the successor state operator in simple environments.

Additionally, these representations might be useful for other purposes. Once state (or state-
actions) representation are computed, they can be used directly as input of a more simple policy
(Ha and Schmidhuber, 2018). They can also be used to derive a bonus for exploration (Machado
et al., 2019). These FB representations only depend on the dynamics and not on other signals
(such as pixels), which can be irrelevant for the task and biased representation learning toward
ignoring the most important information.

Finally we show that the Forward-Backward algorithm is related to the Bellman–Newton
update defined in the previous section:

• In a limited setting (tabular, in a reversible process in which the uniform measure is the
invariant measure of the process), we show that for small learning rates, the Forward-
Backward update is equivalent to Bellman–Newton update (Theorem 11.6).
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This result is interesting, as it suggests that the FB algorithm might share with the Bellman–
Newton algorithm the relation with implicit process estimation, hence its sample efficiency,
without the variance issue of Bellman–Newton.

In the next section, we finally describe several methods to learn the value function 𝑉 𝜋 via
the successor states operator.

2.3.7 Learning value functions via successor states models
In Chapter 12, we describe several methods to learn a model 𝑉𝜙(𝑠) of the value function 𝑉 𝜋

once we are able to learn a model of the successor states operator. We mainly define two
approaches: first, by using the equation 𝑉 𝜋(𝑠) = (𝑀𝜋 · 𝑅)(𝑠) and estimating the integral∫︀
𝑠2
𝜌(d𝑠2)𝑚𝜃(𝑠, 𝑠2)𝑅(𝑠2). Then, by using 𝑚𝜃 as a way to propagate the Bellman error of

Temporal Difference in the environment, similarly to TD(𝜆) with eligibility traces.

Estimating the value function via 𝑉 𝜋 =𝑀𝜋 ·𝑅 We know that:

𝑉 𝜋(𝑠) = (𝑀𝜋 ·𝑅)(𝑠) =
∫︁
𝑠2

𝑀𝜋(𝑠,d𝑠2)𝑅(𝑠2) (2.3.18)

Therefore, after learning a model 𝑚𝜃(𝑠1, 𝑠2), we might want to use the model:

𝑉 (𝑠) :=

∫︁
𝑠2

𝜌(d𝑠2)𝑚𝜃(𝑠, 𝑠2)𝑅(𝑠2) (2.3.19)

. We introduce three cases in which we can estimate the integral (2.3.19):

• If the reward is sparse and located in a single known state 𝑠tar, equation (2.3.19) corre-
sponds to:

𝑉 (𝑠) = 𝑚𝜃(𝑠, 𝑠
tar) (2.3.20)

up to a multiplicative factor independent of 𝑠. Hence, we can directly use 𝑚𝜃(𝑠, 𝑠
tar) as

an estimate of the value function 𝑉 𝜋.

• If the reward is dense, we consider a model 𝑉𝜙(𝑠) (such as a neural network), and optimize
the parameter 𝜙 such that 𝑉𝜙 ≈ 𝑉 . We store a buffer of tuples (𝑠, 𝑟𝑠) where 𝑠 is an
observed state and 𝑟𝑠 the reward observed in 𝑠. Then, we can learn 𝑉𝜙 in a supervised
way: by sampling (𝑠, 𝑟𝑟) in the buffer and an additional independent state 𝑠1, and reduce
the empirical loss (𝑉𝜙(𝑠1)−𝑚𝜃(𝑠1, 𝑠)𝑟𝑠)

2

This approach reduces the problem of policy evaluation to a supervised learning problem
(once a model 𝑚𝜃 is learned)

• If the reward is dense and we additionally use the Forward-Backward parametrization
described in the previous section (𝑚𝜃(𝑠1, 𝑠2) := ⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩ where 𝐹 (𝑠) and
𝐵(𝑠) are low rank representations in R𝑘), we have: 𝑉 (𝑠) = E𝑠2∼𝜌 [⟨𝐹𝜃𝐹 (𝑠), 𝐵𝜃𝐵 (𝑠2)⟩] =
⟨𝐹𝜃𝐹 (𝑠), 𝑏⟩ where 𝑏 := E𝑠2∼𝜌 [𝐵𝜃𝐵 (𝑠2)]. In that case, we can estimate 𝑏 with an online
averaging �̂� ∈ R𝑘 of state representations (�̂� := 1

𝑡

∑︀𝑡
𝑖=1𝐵𝜃𝐵 (𝑠𝑖)), and then use the following

estimate for the value function: 𝑉 (𝑠) = ⟨𝐹𝜃𝐹 (𝑠), �̂�⟩. With this approach, there is no need
to learn an additional parametric model 𝑉𝜙 of the value function.

Using 𝑀 to propagate the Bellman error in the environment: expected value
update via process estimation, and expected TD(𝜆) update We now consider an other
approach for policy evaluation via the successor states operator, in which the successor state
model 𝑚𝜃 is used to propagate the Bellman error in the environment, or in other words to
improve the credit assignment when observing a transition (𝑠, 𝑟, 𝑠′).

First, we derive this method from the expected value update via the process estimation
approach in the tabular case, introduced in Section 2.3.4 of this overview, defined as 𝑉𝑡 := �̂�𝑡�̂�𝑡,
where �̂�𝑡 := (Id−𝛾𝑃𝑡)−1 and 𝑃𝑡 is the frequency matrix of observed transitions.
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• We show that, in expectation over the transition observed at step 𝑡 (𝑠𝑡, 𝑟, 𝑠𝑡+1), condition-
ally to the current estimates 𝑉𝑡,𝑀𝑡, we have E𝑠𝑡∼𝜌,𝑠′𝑡∼𝑃 (.|𝑠𝑡),𝑟∼ℛ(.|𝑠) [𝑉𝑡+1] = 𝑉𝑡 +

1
𝑡 𝛿𝑉 +

𝑜(1/𝑡), where 𝛿𝑉 =𝑀𝑡(𝑅+ 𝛾𝑃𝑉𝑡 − 𝑉𝑡) (Theorem 12.1).

Informally, this equation means that when observing a transition (𝑠, 𝑟, 𝑠′), the bellman error
(𝑟𝑠 + 𝛾𝑉𝑡(𝑠

′)− 𝑉𝑡(𝑠)) is propagated to every state 𝑠1 with weight �̂�𝑡(𝑠1, 𝑠). Hence, 𝑀𝑡(𝑠1, 𝑠)
propagates the credit in the entire environment. We then generalize this update for function
approximations:

• Once we know a model 𝑚𝜃(𝑠1, 𝑠2) of the successor states density, we define the stochastic
update ̂︁𝛿𝜙prop-TD(𝑠, 𝑠

′, 𝑟, 𝑠1) for the value function 𝑉𝜙 where we assume (𝑠, 𝑟, 𝑠′) is a
transition observed in the Markov Process and 𝑠1 is a state sampled independently, as:̂︁𝛿𝜙prop-TD(𝑠, 𝑠

′, 𝑟𝑠, 𝑠1) = 𝜕𝜙𝑉𝜙(𝑠1)𝑚𝜃(𝑠1, 𝑠) (𝑟𝑠 + 𝛾𝑉𝜙(𝑠
′)− 𝑉𝜙(𝑠)) (Algorithm 13).

We prove that ̂︁𝛿𝜙prop-TD is an unbiased estimate of ‖𝑉𝜙 − 𝑉 tar‖2𝜌, where 𝑉 tar := 𝑉𝜙 + 𝛿𝑉
and 𝛿𝑉 is defined as in the tabular expected value update via process estimation: 𝛿𝑉 =
𝑀𝜃(𝑅+ 𝛾𝑃𝑉𝜙 − 𝑉𝜙) (Theorem 12.2).

Hence, this method can be seen as an approximation of the online update of the value function
for the process estimation method, with function approximations.

We then show in Section 12.2.3 that this update corresponds to an estimate of the expected
eligibility traces update in TD(𝜆). Eligibility traces, introduced in Section 1.4.2 are a way to
improve credit assignment by propagating the Bellman error to the states recently visited in the
current trajectory. We show that our approach is tackling credit assignment by propagating the
Bellman error to all states which could have been visited from the current state 𝑠, according to
the distribution of predecessor states, which is equivalent to the expected traces for a state 𝑠.

• We prove that the TD(𝜆) update with eligibility traces and the update ̂︁𝛿𝜙prop-TD estimating
the value update via process estimation are both approximating the expected eligibility
traces (Theorem 12.3).

This method is closely related to expected eligibility traces (van Hasselt et al., 2020), and source
traces (Pitis, 2018), both discussed in Section 12.2.3.

One of our issues while working on this project was to find the proper experimental setup.
As discussed in Section 2.3.4, learning a model 𝑚𝜃(𝑠1, 𝑠2) of the successor state operator raises
multiple technical issues. Additionally, we cannot measure the direct efficiency of learning the
successor states operator to improve our method: we first need to compute a value function,
then to plug this estimate into an other RL algorithm such as actor critic, and observe the
policy improvement. Hence, our measure of progress was very indirect.

We wanted to focus on a simple setup, but still with continuous state space. The simplest
case for deriving the value function from the successor state operator, in a continuous state
space, is when the reward is sparse and localized in a known target state 𝑠tar. Unfortunately,
this is not a frequent setting in standard environments. Still, this setup is quite similar to
multi-goal RL, in which the reward is localized in a known goal state 𝑔. The main difference is
that in multi-goal RL, the agent learns a goal-dependent policy 𝜋(𝑎|𝑠, 𝑔), whose objective is to
reach 𝑔, while in our setup, the policy was not goal-dependent 𝜋(𝑎|𝑠).

We extended our approach for the successor state operator with a fixed policy to the
multi-goal RL setting. In the next Section, we describe how this approach allows us to derive
unbiased Q-learning methods and actor-critic methods for multi-goal RL, dealing with the issue
of sparse rewards.
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2.4 Unbiased methods for multi-goal RL

In Part V, we present our work on multi-goal reinforcement learning problems. This part is
mainly based on the following preprint:

Blier, L. and Ollivier, Y. (2021). Unbiased methods for multi-goal reinforcement
learning. arXiv preprint arXiv:2106.08863

In the last part of the thesis, we study Multi-goal reinforcement learning is a specific setting
of RL where the agent learns a goal-dependent policy 𝜋(𝑎|𝑠, 𝑔), whose objective is to reach a
goal 𝑔 in the environment. In this introduction we will consider only states as goals (𝑔 ∈ 𝒮),
but in Part V the setting is more general.

This setting is not the same the one used in the previous part, for policy evaluation via the
successor state operator. In the previous part, via 𝑀𝜋, we are estimating the value function of
a non-goal dependent policy 𝜋(.|𝑠) for reaching any goal 𝑔. In this part, the policy is different
for every goal. Still, we are able to translate some of the tools developed for the successor states
for the goal oriented setting. Letℳ be a multi-goal environment with state space 𝒮 and a goal
dependent reward 𝑅(𝑠, 𝑔). Typically, in a discrete environment, the goal dependent reward is
defined as 𝑅(𝑠, 𝑔) = 1𝑠=𝑔, which is the sparse reward, non-zero only if the goal is reached. We
try to optimize a policy 𝜋(.|𝑠, 𝑔).

We define the augmented environment ℳ̃ with state space 𝒮 := 𝒮 ×𝒮, in which the current
state 𝑠 ∈ 𝒮 is defined as 𝑠 := (𝑠, 𝑔), the tuple containing the state in the original process 𝑠
and the currently aimed goal 𝑔. In the augmented environment, the goal-dependent reward
𝑅(𝑠, 𝑔) becomes the non-goal oriented reward �̃�(𝑠) := 𝑅(𝑠, 𝑔), and similarly the goal-oriented
policy 𝜋(𝑎|𝑠, 𝑔) becomes the non-goal oriented policy �̃�(𝑎|𝑠). In that setting, estimating the
multi-goal value function 𝑉 𝜋(.|.,𝑔)(𝑠, 𝑔) is now equivalent to estimating the value function in
the augmented environment 𝑉 �̃�(𝑠), if the reward is a sparse reward in 𝑔. Estimating the value
function for every sparse goal is now very similar to estimating the successor states operator in
the augmented environment ℳ̃.

The first known approach for multi-goal RL is with Universal Value Function Approximators
(UVFA) (Schaul et al., 2015), which extend the classical Q-learning and Temporal Difference
(TD) algorithms to the multi-goal setting. It learns the goal-conditioned value-function 𝑉 𝜋(𝑠, 𝑔)
or 𝑄-function 𝑄*(𝑠, 𝑎, 𝑔) for every state-goal pair, with function approximation, via a TD
algorithm.

Still, UVFA requires observing rewards, and no learning occurs until a reward is observed.
In continuous state spaces, the reward is usually defined as 𝑅𝜀(𝑠, 𝑔) = 1‖𝑠−𝑔‖⩽𝜀. When 𝜀→ 0,
the probability of reaching the reward with a stochastic policy goes to 0, and UVFA can’t
learn. In practice, UVFA fails in many high dimensional environments, when the probability of
reaching the target goal is low and the agent almost never gets any learning signal. We call
this phenomena the issue of vanishing rewards.

The most popular method in that setting is Hindsight Experience Replay (HER) (Andrychow-
icz et al., 2017). It leverages information between goals via the following principle: trajectories
aiming at a goal 𝑔 but reaching a goal 𝑔′ can be used for learning exactly as if the trajectory
had been aiming at 𝑔′ from start. This strategy has proved successful in practice and removes
the issue of vanishing rewards, but is known to be biased (Manela and Biess, 2021; Lanka and
Wu, 2018).

In the following, we first study some of HER’s theoretical properties. Then, we will derive a
Q-learning algorithm and an actor-critic algorithm for multi-goal environments.

2.4.1 A study of Hindsight Experience Replay’s bias
While HER has proved successful in practice, it is known to be biased (Manela and Biess, 2021;
Lanka and Wu, 2018), which means it could converge in some settings to low-return policy.
This bias corresponds to a well-known psychological bias (Fischhoff, 1975). In their request for
research for robotic multi-goal environments, Plappert et al. (2018) list the necessity for an
unbiased version of HER, as such bias can lead to low-return policies.
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In chapter 14, we study HER’s bias. First, we confirm theoretically that HER is biased:

• We define counter-example environments, such that it highlights HER’s bias. Theoreti-
cally, we prove that HER cannot converge to the true optimal 𝑄-function 𝑄* in these
environments (Theorem 14.2). Empirically, we show that in such environments, HER
converges to a low-return policy.

Our second contribution on HER is a positive result. We show that despite its bias in general
settings, HER is mathematically well-grounded in deterministic environments:

• We show that HER is actually unbiased in deterministic environments (Theorem 14.1).

This result vindicates HER for deterministic environments: HER leverages the structure of
multi-goal environments, is not vanishing when the rewards are sparse, and is mathematically
well-grounded. This covers many usual environments such as robotic environments.

2.4.2 Multi-goal RL via infinitely sparse rewards
While HER is well-founded in deterministic environments, it is biased in the stochastic case
and can learn low-return policies. We now introduce unbiased methods for multi-goal RL in
the general setting, including stochastic environments, removing the issue of vanishing rewards.
We first introduce the setting used to derive our algorithms.

In continuous state spaces, the goal-oriented reward is usually defined as:

𝑅𝜀(𝑠, 𝑔) = 1‖𝑠−𝑔‖⩽𝜀. (2.4.1)

When 𝜀→ 0, the probability of reaching the reward with a stochastic policy goes to 0, and for
any stochastic policy, the value function 𝑉 𝜋𝜀 (𝑠, 𝑔) converges to 0 as well. This is the vanishing
rewards issue. To avoid this issue, we need a scaling factor, and consider the reward 1

𝜆(𝜀)𝑅𝜀(𝑠, 𝑔),
with 𝜆(𝜀) the volume of the ball of size 𝜀 in 𝒮. When 𝜀→ 0, this rescaled reward converges to
the Dirac reward :

𝑅(𝑠,d𝑔) := 𝛿𝑠(d𝑔), (2.4.2)
where 𝛿𝑥 is the Dirac measure at 𝑥. Intuitively, the Dirac reward 𝑅(𝑠,d𝑔) is infinite if the goal
is reached (𝑠 = 𝑔) and 0 elsewhere. Formally, the reward is not a function but a measure on
the goal space 𝒢 parametrized by the state 𝑠.

However, even after such a scaling, the UVFA update still vanishes with high probability for
small 𝜀 (this just scales things by 1/𝜆(𝜀)). We will build algorithms that work directly in the limit
𝜀 = 0: replacing the sparse reward 𝑅𝜀(𝑠, 𝑔) by the infinitely sparse reward 𝑅(𝑠,d𝑔) = 𝛿𝑠(d𝑔)
will allow us to leverage the Dirac structure to remove the vanishing rewards issue.

The first step is to understand this setting mathematically. In Chapter 13, we formally
define multi-goal RL with infinitely sparse rewards, and check that it corresponds asymptotically
to the original problem with reward 𝑅𝜀:

• We properly define the infinitely sparse reward via Dirac measures, and show that it
corresponds to the limit of the reward 𝑅𝜀.
Under continuity assumptions, we define the corresponding expected return with infinitely
sparse rewards 𝐽(𝜋), and show that its corresponds to the limit of the limit of the return
𝐽𝜀(𝜋) with reward 𝑅𝜀 when 𝜀→ 0: 𝐽𝜀(𝜋)→𝜀→0 𝐽(𝜋) (Theorem 13.8).
Under these assumptions, we show that if 𝜋1(.|𝑠, 𝑔) and 𝜋2(.|𝑠, 𝑔) are two goal-conditioned
policies, 𝜋1 is better than 𝜋2 with infinitely sparse rewards if and only if 𝜋1 is asymptotically
better than 𝜋2 for reward 𝑅𝜀 when 𝜀→ 0 (Theorem 13.7).

There results allow us to work directly with infinitely sparse rewards, even for solving the
original problem with reward 𝑅𝜀, when 𝜀 is small. Counter-intuitively, replacing sparse rewards
by infinitely sparse rewards solves the vanishing issue. Instead of waiting an observation of the
reward, we can algebraically compute the reward contribution in the updates, leveraging our
knowledge on the Dirac function, an obtain non-vanishing algorithms.

In the following sections, we describe how to design Q-learning and actor-critic methods,
with no vanishing reward issue, via infinitely sparse rewards.
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2.4.3 Unbiased actor-critic for multi-goal RL

In chapter 16, we describe actor critic methods for multi-goal RL via infinitely sparse rewards.
We consider a parametric goal-conditioned policy 𝜋𝜃𝜋(𝑎|𝑠, 𝑔). Our goal is to maximize 𝜃𝜋 ↦→
𝐽(𝜋𝜃𝜋), by computing stochastic estimates of 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋). Our goal is to adapt the standard
policy gradient theorem stated in Proposition 1.3 in the case of goal-oriented environments:
𝜕𝜃𝜋𝐽(𝜋𝜃𝜋) = E𝑠,𝑎,𝑠′ [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠) (𝑟𝑠 + 𝛾𝑉 𝜋(𝑠′)− 𝑉 𝜋(𝑠))]. This requires learning a model
of the multi-goal value function.

Actually, we show that while the value function satisfies a Bellman equation, it is not directly
possible to estimate an unbiased estimate of the Bellman error gradient on the value function.
This can be explained because of the double dependency of the value function as a function
of the goal: the goal both defines the policy and the reward. These two effects need to be
separated in order to get an unbiased estimate of Bellman error gradient. We mitigate this
issue by introducing the successor goal operator 𝑀𝜋(𝑠, 𝑔1,d𝑔2). This object is very similar to
the successor states operator, and describes the expected discounted time spent in the goal 𝑔2
if following the policy 𝑔1. We have the following relation between the goal-conditioned value
measure and the successor goal operator:

• Under continuity assumptions, we can compute the goal conditioned value measure from
the successor goal operator, using:

𝑉 𝜋(𝑠,d𝑔) =𝑀𝜋(𝑠, 𝑔, d𝑔) (2.4.3)

Hence, if we are able to learn a model 𝑀𝜃(𝑠, 𝑔1,d𝑔2) = 𝑚𝜃(𝑠, 𝑔1, 𝑔2)𝜌(d𝑔2) for the successor
goal operator, we naturally obtain a model 𝑉𝜃(𝑠,d𝑔) = 𝑚𝜃(𝑠, 𝑔, 𝑔)𝜌(d𝑔) of the goal-
conditioned value measure (Theorem 13.5).

Therefore, our objective is now to describe how to learn an unbiased estimate of the successor
goal operator 𝑀𝜋(𝑠, 𝑔1,d𝑔2). This can be done by applying some of our results derived for the
successor goals operator:

• We define a 𝛾-contractive Bellman operator for the successor goals operator, show that
its unique fixed point is the true successor goals operator 𝑀𝜋, and derive an unbiased
estimate of the Bellman error’s gradient for function approximators (Theorems 16.1
and 13.2). This algorithm removes the vanishing reward issue.

Finally, we are able to derive an unbiased actor-critic algorithm for goal-conditioned policy. This
actor-critic update is an extension of the standard actor-critic update defined in Proposition 1.3,
but for multi-goal environments:

• We define the actor-critic update ̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔)

̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔) := 𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔) (𝛾𝑚𝜃𝑀 (𝑠′, 𝑔, 𝑔)−𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔)) (2.4.4)

where we assume (𝑠, 𝑎, 𝑠′) is a transition observed while aiming for goal 𝑔.

We show that with an accurate model𝑚𝜃𝑀 of the successor goals operator, ̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔)

is an unbiased estimate of the policy gradient 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋 ) (Theorem 16.2).

2.4.4 Unbiased Q-learning for multi-goal RL

In Chapter 15, we derive an unbiased Q-learning algorithm with infinitely sparse rewards,
solving the issue of vanishing rewards. Our approach is similar to the strategy described for the
successor state operator: first, we define a contractive operator on the space of action-value
measures such that its fixed point is the 𝑄*(𝑠, 𝑎,d𝑔), then we use this operator to define an
unbiased 𝑄-learning method with function approximators:
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• We formally define the optimal action-value measure 𝑄*(𝑠, 𝑎,d𝑔), and the optimal Bellman
operator for action-value measure:

𝑄(𝑠, 𝑎, .) ↦→ 𝛿𝑠(.) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎)

[︂
sup
𝑎′
𝑄(𝑠′, 𝑎′, .)

]︂
, (2.4.5)

We show that if we define the sequence 𝑄𝑡+1 := 𝑇 ·𝑄𝑡, then 𝑄𝑡 →𝑡→∞ 𝑄*, similarly to
standard result on the 𝑄-function and the optimal Bellman operator.

Once we defined 𝑄* and the optimal Bellman operator, we can derive a 𝑄-learning algorithm
with function approximations, similarly to our approach for learning the successor state operator.
We represent a model 𝑄𝜃(𝑠, 𝑎,d𝑔) := 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌(d𝑔), where 𝜌 is a reference measure on goals:

• We define the stochastic update ̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠
′, 𝑔), where we assume (𝑠, 𝑎, 𝑠′) is a transi-

tion observed in the Markov Process and 𝑔 is an independent goal:

̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠
′, 𝑔) := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)

(︁
𝛾max

𝑎′
𝑞𝜃(𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)
)︁

(2.4.6)

We then define the corresponding Q-learning algorithm with infinitely sparse rewards
(Algorithm 14). This update removes the issue of vanishing rewards.

We prove that ̂︀𝛿𝜃𝛿-DQN is an unbiased estimate of the optimal Bellman error (Theo-
rem 15.2).

This algorithm can be used with discrete actions such as DQN (Mnih et al., 2013) or with
continuous actions such as DDPG (Lillicrap et al., 2015). It is off-policy, hence can be used
with any exploration strategy. Informally, the first term is leveraging that, when observing
the state 𝑠, we have an information on the Q-function on how to reach 𝑠. The second term
propagates the Q-value on how to reach the target goal 𝑔.

Experimentally, we demonstrate that the algorithms using infinitely sparse rewards improves
performance of the corresponding method (UVFA) using sparse reward 𝑅𝜀. In environments
designed to exhibit the HER bias issue, we show that HER is unable to learn while unbiased
methods can learn the optimal policy. Still, these methods do not perform as well as HER in
some standard environments, and are unable to learn at all in more complex environments.

One of the issues of these methods is variance. The Dirac rewards remove the infinite
variance of vanishing rewards in UVFA when 𝜀→ 0 (first term of (2.4.6)). But this does not
change the way the reward is propagated to other states (second term of (2.4.6)). Selecting
goals 𝑔 more correlated to the state 𝑠 as in HER could also be helpful, but this is not obvious
to do without re-introducing HER-style bias.

To conclude, in Part V, we prove that there exist unbiased goal-oriented RL algorithms
which do not vanish when rewards become sparse: it is possible to deal with sparse rewards
in RL directly via the infinitely sparse reward limit, although this does not solve all variance
issues. We also prove that another multi-goal method, HER, is unbiased and has the correct
fixed point in all deterministic environments
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Chapter 3

The Description Length of Deep
Learning Models

In this chapter, we present the following published paper:

Blier, L. and Ollivier, Y. (2018). The description length of deep learning models.
In Advances in Neural Information Processing Systems

3.1 Introduction

Deep learning has achieved remarkable results in many different areas (LeCun et al., 2015).
Still, the ability of deep models not to overfit despite their large number of parameters is not
well understood. To quantify the complexity of these models in light of their generalization
ability, several metrics beyond parameter-counting have been measured, such as the number
of degrees of freedom of models (Gao and Jojic, 2016), or their intrinsic dimension (Li et al.,
2018). These works concluded that deep learning models are significantly simpler than their
numbers of parameters might suggest.

In information theory and Minimum Description Length (MDL), learning a good model of
the data is recast as using the model to losslessly transmit the data in as few bits as possible.
More complex models will compress the data more, but the model must be transmitted as
well. The overall codelength can be understood as a combination of quality-of-fit of the model
(compressed data length), together with the cost of encoding (transmitting) the model itself. For
neural networks, the MDL viewpoint goes back as far as (Hinton and Van Camp, 1993), which
used a variational technique to estimate the joint compressed length of data and parameters in
a neural network model.

Compression is strongly related to generalization and practical performance. Standard
sample complexity bounds (VC-dimension, PAC-Bayes...) are related to the compressed length
of the data in a model, and any compression scheme leads to generalization bounds (Blum and
Langford, 2003). Specifically for deep learning, (Arora et al., 2018) showed that compression
leads to generalization bounds (see also (Dziugaite and Roy, 2017)). Several other deep
learning methods have been inspired by information theory and the compression viewpoint.
In unsupervised learning, autoencoders and especially variational autoencoders (Kingma and
Welling, 2013) are compression methods of the data (Ollivier, 2014). In supervised learning,
the information bottleneck method studies how the hidden representations in a neural network
compress the inputs while preserving the mutual information between inputs and outputs
(Tishby and Zaslavsky, 2015; Shwartz-Ziv and Tishby, 2017; Achille and Soatto, 2017).

MDL is based on Occam’s razor, and on Chaitin’s hypothesis that “comprehension is
compression” (Chaitin, 2007): any regularity in the data can be exploited both to compress it
and to make predictions. This is ultimately rooted in Solomonoff’s general theory of inference
(Solomonoff, 1964) (see also, e.g., (Hutter, 2007; Schmidhuber, 1997)), whose principle is to
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Figure 3.1: Fake labels cannot be compressed Measuring codelength while training a deep
model on MNIST with true and fake labels. The model is an MLP with 3 hidden layers of size
200, with RELU units. With ordinary SGD training, the model is able to overfit random labels.
The plot shows the effect of using variational learning instead, and reports the variational
objective (encoding cost of the training data, see Section 3.3.3), on true and fake labels. We
also isolated the contribution from parameter encoding in the total loss (KL term in (3.3.2)).
With true labels, the encoding cost is below the uniform encoding, and half of the description
length is information contained in the weights. With fake labels, on the contrary, the encoding
cost converges to a uniform random model, with no information contained in the weights: there
is no mutual information between inputs and outputs.

favor models that correspond to the “shortest program” to produce the training data, based on
its Kolmogorov complexity (Li and Vitányi, 2008). If no structure is present in the data, no
compression to a shorter program is possible.

The problem of overfitting fake labels is a nice illustration: convolutional neural networks
commonly used for image classification are able to reach 100% accuracy on random labels on the
train set (Zhang et al., 2017a). However, measuring the associated compression bound (Fig. 3.1)
immediately reveals that these models do not compress fake labels (and indeed, theoretically,
they cannot, see Appendix 3.A), that no information is present in the model parameters, and
that no learning has occurred.

In this work we explicitly measure how much current deep models actually compress data.
As seen above, this may clarify several issues around generalization and measures of model
complexity. Our contributions are:

• We show that the traditional method to estimate MDL codelengths in deep learning,
variational inference (Hinton and Van Camp, 1993), yields surprisingly inefficient code-
lengths for deep models, despite explicitly minimizing this criterion. This might explain
why variational inference as a regularization method often does not reach optimal test
performance.

• We introduce new practical ways to compute tight compression bounds in deep learning
models, based on the MDL toolbox (Grünwald, 2007; Rissanen, 2007). We show that
prequential coding on top of standard learning, yields much better codelengths than
variational inference, correlating better with test set performance. Thus, despite their
many parameters, deep learning models do compress the data well, even when accounting
for the cost of describing the model.
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3.2 Probabilistic Models, Compression, and Information
Theory

Imagine that Alice wants to efficiently transmit some information to Bob. Alice has a dataset
𝒟 = {(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛)} where 𝑥1, ..., 𝑥𝑛 are some inputs and 𝑦1, ..., 𝑦𝑛 some labels. We do
not assume that these data come from a “true” probability distribution. Bob also has the data
𝑥1, ..., 𝑥𝑛, but he does not have the labels. This describes a supervised learning situation in
which the inputs 𝑥 may be publicly available, and a prediction of the labels 𝑦 is needed. How
can deep learning models help with data encoding? One key problem is that Bob does not
necessarily know the precise, trained model that Alice is using. So some explicit or implicit
transmission of the model itself is required.

We study, in turn, various methods to encode the labels 𝑦, with or without a deep learning
model. Encoding the labels knowing the inputs is equivalent to estimating their mutual
information (Section 3.2.4); this is distinct from the problem of practical network compression
(Section 3.3.2) or from using neural networks for lossy data compression. Our running example
will be image classification on the MNIST (LeCun et al., 1998a) and CIFAR10 (Krizhevsky,
2009) datasets.

3.2.1 Definitions and notation
Let 𝒳 be the input space and 𝒴 the output (label) space. In this work, we only consider
classification tasks, so 𝒴 = {1, ...,𝐾}. The dataset is 𝒟 := {(𝑥1, 𝑦1), ..., (𝑦𝑛, 𝑥𝑛)}. Denote
𝑥𝑘:𝑙 := (𝑥𝑘, 𝑥𝑘+1, ..., 𝑥𝑙−1, 𝑥𝑙). We define a model for the supervised learning problem as a
conditional probability distribution 𝑝(𝑦|𝑥), namely, a function such that for each 𝑥 ∈ 𝒳 ,∑︀
𝑦∈𝒴 𝑝(𝑦|𝑥) = 1. A model class, or architecture, is a set of models depending on some

parameter 𝜃: ℳ = {𝑝𝜃, 𝜃 ∈ Θ}. The Kullback–Leibler divergence between two distributions is
KL(𝜇‖𝜈) = E𝑋∼𝜇[log2

𝜇(𝑥)
𝜈(𝑥) ].

3.2.2 Models and codelengths
We recall a basic result of compression theory (Shannon, 1948).

Proposition 3.1 (Shannon–Huffman code). Suppose that Alice and Bob have agreed in advance
on a model 𝑝, and both know the inputs 𝑥1:𝑛. Then there exists a code to transmit the labels
𝑦1:𝑛 losslessly with codelength (up to at most one bit on the whole sequence)

𝐿𝑝(𝑦1:𝑛|𝑥1:𝑛) = −
𝑛∑︁
𝑖=1

log2 𝑝(𝑦𝑖|𝑥𝑖) (3.2.1)

This bound is known to be optimal if the data are independent and coming from the model
𝑝 (Mackay, 2003). The one additional bit in the Shannon–Huffman code is incurred only once
for the whole dataset (Mackay, 2003). With large datasets this is negligible. Thus, from now on
we will systematically omit the +1 as well as admit non-integer codelengths (Grünwald, 2007).
We will use the terms codelength or compression bound interchangeably.

This bound is exactly the categorical cross-entropy loss evaluated on the model 𝑝. Hence,
trying to minimize the description length of the outputs over the parameters of a model class is
equivalent to minimizing the usual classification loss.

Here we do not consider the practical implementation of compression algorithms: we only
care about the theoretical bit length of their associated encodings. We are interested in measuring
the amount of information contained in the data, the mutual information between input and
output, and how it is captured by the model. Thus, we will directly work with codelength
functions.

An obvious limitation of the bound (3.2.1) is that Alice and Bob both have to know the
model 𝑝 in advance. This is problematic if the model must be learned from the data.
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3.2.3 Uniform encoding

The uniform distribution 𝑝unif(𝑦|𝑥) = 1
𝐾 over the 𝐾 classes does not require any learning from

the data, thus no additional information has to be transmitted. Using 𝑝unif(𝑦|𝑥) (3.2.1) yields
a codelength

𝐿unif(𝑦1:𝑛|𝑥1:𝑛) = 𝑛 log2𝐾 (3.2.2)

This uniform encoding will be a sanity check against which to compare the other encodings
in this text. For MNIST, the uniform encoding cost is 60000× log2 10 = 199 kbits. For CIFAR,
the uniform encoding cost is 50000× log2 10 = 166 kbits.

3.2.4 Mutual information between inputs and outputs

Intuitively, the only way to beat a trivial encoding of the outputs is to use the mutual information
(in a loose sense) between the inputs and outputs.

This can be formalized as follows. Assume that the inputs and outputs follow a “true” joint
distribution 𝑞(𝑥, 𝑦). Then any transmission method with codelength 𝐿 satisfies (Mackay, 2003)

E𝑞[𝐿(𝑦|𝑥)] ⩾ 𝐻(𝑦|𝑥) (3.2.3)

Therefore, the gain (per data point) between the codelength 𝐿 and the trivial codelength
𝐻(𝑦) is

𝐻(𝑦)− E𝑞[𝐿(𝑦|𝑥)] ⩽ 𝐻(𝑦)−𝐻(𝑦|𝑥) = 𝐼(𝑦;𝑥) (3.2.4)

the mutual information between inputs and outputs (Mackay, 2003).
Thus, the gain of any codelength compared to the uniform code is limited by the amount of

mutual information between input and output. (This bound is reached with the true model
𝑞(𝑦|𝑥).) Any successful compression of the labels is, at the same time, a direct estimation of
the mutual information between input and output. The latter is the central quantity in the
Information Bottleneck approach to deep learning models (Shwartz-Ziv and Tishby, 2017).

Note that this still makes sense without assuming a true underlying probabilistic model,
by replacing the mutual information 𝐻(𝑦)−𝐻(𝑦|𝑥) with the “absolute” mutual information
𝐾(𝑦)−𝐾(𝑦|𝑥) based on Kolmogorov complexity 𝐾 (Li and Vitányi, 2008).

3.3 Compression Bounds via Deep Learning

Various compression methods from the MDL toolbox can be used on deep learning models.
(Note that a given model can be stored or encoded in several ways, some of which may have large
codelengths. A good model in the MDL sense is one that admits at least one good encoding.)

3.3.1 Two-Part Encodings

Alice and Bob can first agree on a model class (such as “neural networks with two layers and
1,000 neurons per layer”). However, Bob does not have access to the labels, so Bob cannot train
the parameters of the model. Therefore, if Alice wants to use such a parametric model, the
parameters themselves have to be transmitted. Such codings in which Alice first transmits the
parameters of a model, then encodes the data using this parameter, have been called two-part
codes (Grünwald, 2007).

Definition 3.2 (Two-part codes). Assume that Alice and Bob have first agreed on a model
class (𝑝𝜃)𝜃∈Θ. Let 𝐿param(𝜃) be any encoding scheme for parameters 𝜃 ∈ Θ. Let 𝜃* be any
parameter. The corresponding two-part codelength is

𝐿2-part
𝜃* (𝑦1:𝑛|𝑥1:𝑛) := 𝐿param(𝜃

*) + 𝐿𝑝𝜃* (𝑦1:𝑛|𝑥1:𝑛) = 𝐿param(𝜃
*)−

𝑛∑︁
𝑖=1

log2 𝑝𝜃*(𝑦𝑖|𝑥𝑖) (3.3.1)
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Table 3.1: Compression bounds via Deep Learning. Compression bounds given by different
codes on two datasets, MNIST and CIFAR10. The Codelength is the number of bits necessary to
send the labels to someone who already has the inputs. This codelength includes the description
length of the model. The compression ratio for a given code is the ratio between its codelength
and the codelength of the uniform code. The test accuracy of a model is the accuracy of its
predictions on the test set. For 2-part and network compression codes, we report results from
(Han et al., 2015a) and (Xu et al., 2017b), and for the intrinsic dimension code, results from
(Li et al., 2018). The values in the table for these codelengths and compression ratio are lower
bounds, only taking into account the codelength of the weights, and not the codelength of the
data encoded with the model (the final loss is not always available in these publications). For
variational and prequential codes, we selected the model and hyperparameters providing the
best compression bound.

Code mnist cifar10
Codelength Comp. Test Codelength Comp. Test

(kbits) Ratio Acc (kbits) Ratio Acc

Uniform 199 1. 10% 166 1. 10%

float32 2-part > 8.6Mb > 45. 98.4% > 428Mb > 2500. 92.9%
Network compr. > 400 > 2. 98.4% > 14Mb > 83. 93.3%
Intrinsic dim. > 9.28 > 0.05 90% > 92, 8 > 0.56 70%

Variational 22.2 0.11 98.2% 89.0 0.54 66,5%
Prequential 4.10 0.02 99.5% 45.3 0.27 93.3%

An obvious possible code 𝐿param for 𝜃 is the standard float32 binary encoding for 𝜃, for
which 𝐿param(𝜃) = 32 dim(𝜃). In deep learning, two-part codes are widely inefficient and much
worse than the uniform encoding (Graves, 2011). For a model with 1 million parameters, the
two-part code with float32 binary encoding will amount to 32Mbits, or 200 times the uniform
encoding on CIFAR10.

3.3.2 Network Compression

The practical encoding of trained models is a well-developed research topic, e.g., for use on
small devices such as cell phones. Such encodings can be seen as two-part codes using a clever
code for 𝜃 instead of encoding every parameter on 32 bits. Possible strategies include training a
student layer to approximate a well-trained network (Ba and Caruana, 2014; Romero et al.,
2015), or pipelines involving retraining, pruning, and quantization of the model weights (Han
et al., 2015a,b; Simonyan and Zisserman, 2014; Louizos et al., 2017; See et al., 2016; Ullrich
et al., 2017).

Still, the resulting codelengths (for compressing the labels given the data) are way above
the uniform compression bound for image classification (Table 3.1).

Another scheme for network compression, less used in practice but very informative, is to
sample a random low-dimensional affine subspace in parameter space and to optimize in this
subspace (Li et al., 2018). The number of parameters is thus reduced to the dimension of the
subspace and we can use the associated two-part encoding. (The random subspace can be
transmitted via a pseudorandom seed.) Our methodology to derive compression bounds from
(Li et al., 2018) is detailed in Appendix 3.B.

3.3.3 Variational and Bayesian Codes

Another strategy for encoding weights with a limited precision is to represent these weights by
random variables: the uncertainty on 𝜃 represents the precision with which 𝜃 is transmitted.
The variational code turns this into an explicit encoding scheme, thanks to the bits-back
argument (Honkela and Valpola, 2004). Initially a way to compute codelength bounds with
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neural networks (Hinton and Van Camp, 1993), this is now often seen as a regularization
technique (Blundell et al., 2015). This method yields the following codelength.

Definition 3.3 (Variational code). Assume that Alice and Bob have agreed on a model class
(𝑝𝜃)𝜃∈Θ and a prior 𝛼 over Θ. Then for any distribution 𝛽 over Θ, there exists an encoding
with codelength

𝐿var
𝛽 (𝑦1:𝑛|𝑥1:𝑛) = KL (𝛽‖𝛼) + E𝜃∼𝛽

[︀
𝐿𝑝𝜃 (𝑦1:𝑛|𝑥1:𝑛)

]︀
= KL (𝛽‖𝛼)− E𝜃∼𝛽

[︂ 𝑛∑︁
𝑖=1

log2 𝑝𝜃(𝑦𝑖|𝑥𝑖)
]︂

(3.3.2)

This can be minimized over 𝛽, by choosing a parametric model class (𝛽𝜙)𝜙∈Φ, and minimizing
(3.3.2) over 𝜙. A common model class for 𝛽 is the set of multivariate Gaussian distributions
{𝒩 (𝜇,Σ), 𝜇 ∈ R𝑑,Σ diagonal}, and 𝜇 and Σ can be optimized with a stochastic gradient
descent algorithm (Graves, 2011; Kucukelbir et al., 2017). Σ can be interpreted as the precision
with which the parameters are encoded.

The variational bound 𝐿var
𝛽 is an upper bound for the Bayesian description length bound of

the Bayesian model 𝑝𝜃 with parameter 𝜃 and prior 𝛼. Considering the Bayesian distribution of
𝑦,

𝑝Bayes(𝑦1:𝑛|𝑥1:𝑛) =
∫︁
𝜃∈Θ

𝑝𝜃(𝑦1:𝑛|𝑥1:𝑛)𝛼(𝜃)𝑑𝜃, (3.3.3)

then Proposition 3.1 provides an associated code via (3.2.1) with model 𝑝Bayes: 𝐿Bayes(𝑦1:𝑛|𝑥1:𝑛) =
− log2 𝑝Bayes(𝑦1:𝑛|𝑥1:𝑛) Then, for any 𝛽 we have (Graves, 2011)

𝐿var
𝛽 (𝑦1:𝑛|𝑥1:𝑛) ⩾ 𝐿Bayes(𝑦1:𝑛|𝑥1:𝑛) (3.3.4)

with equality if and only if 𝛽 is equal to the Bayesian posterior 𝑝Bayes(𝜃|𝑥1:𝑛, 𝑦1:𝑛). Variational
methods can be used as approximate Bayesian inference for intractable Bayesian posteriors.

We computed practical compression bounds with variational methods on MNIST and
CIFAR10. Neural networks that give the best variational compression bounds appear to be
smaller than networks trained the usual way. We tested various fully connected networks and
convolutional networks (Appendix 3.C): the models that gave the best variational compression
bounds were small LeNet-like networks. To test the link between compression and test accuracy,
in Table 3.1 we report the best model based on compression, not test accuracy. This results in
a drop of test accuracy with respect to other settings.

On MNIST, this provides a codelength of the labels (knowing the inputs) of 24.1 kbits, i.e.,
a compression ratio of 0.12. The corresponding model achieved 95.5% accuracy on the test set.

On CIFAR, we obtained a codelength of 89.0 kbits, i.e., a compression ratio of 0.54. The
corresponding model achieved 61.6% classification accuracy on the test set.

We can make two observations. First, choosing the model class which minimizes variational
codelength selects smaller deep learning models than would cross-validation. Second, the model
with best variational codelength has low classification accuracy on the test set on MNIST and
CIFAR, compared to models trained in a non-variational way. This aligns with a common
criticism of Bayesian methods as too conservative for model selection compared with cross-
validation (Rissanen et al., 1992; Foster and George, 1994; Barron and Yang, 1999; Grünwald,
2007).

3.3.4 Prequential or Online Code
The next coding procedure shows that deep neural models which generalize well also compress
well.

The prequential (or online) code is a way to encode both the model and the labels without
directly encoding the weights, based on the prequential approach to statistics (Dawid, 1984), by
using prediction strategies. Intuitively, a model with default values is used to encode the first
few data; then the model is trained on these few encoded data; this partially trained model is
used to encode the next data; then the model is retrained on all data encoded so far; and so on.
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Precisely, we call 𝑝 a prediction strategy for predicting the labels in 𝒴 knowing the inputs in
𝒳 if for all 𝑘, 𝑝(𝑦𝑘+1|𝑥1:𝑘+1, 𝑦1:𝑘) is a conditional model; namely, any strategy for predicting
the 𝑘+1- label after already having seen 𝑘 input-output pairs. In particular, such a model may
learn from the first 𝑘 data samples. Any prediction strategy 𝑝 defines a model on the whole
dataset:

𝑝preq(𝑦1:𝑛|𝑥1:𝑛) = 𝑝(𝑦1|𝑥1) · 𝑝(𝑦2|𝑥1:2, 𝑦1) · . . . · 𝑝(𝑦𝑛|𝑥1:𝑛, 𝑦1:𝑛−1) (3.3.5)

Let (𝑝𝜃)𝜃∈Θ be a deep learning model. We assume that we have a learning algorithm which
computes, from any number of data samples (𝑥1:𝑘, 𝑦1:𝑘), a trained parameter vector 𝜃(𝑥1:𝑘, 𝑦1:𝑘).
Then the data is encoded in an incremental way: at each step 𝑘, 𝜃(𝑥1:𝑘, 𝑦1:𝑘) is used to predict
𝑦𝑘+1.

In practice, the learning procedure 𝜃 may only reset and retrain the network at certain
timesteps. We choose timesteps 1 = 𝑡0 < 𝑡1 < ... < 𝑡𝑆 = 𝑛, and we encode the data by
blocks, always using the model learned from the already transmitted data (Algorithm 2 in
Appendix 3.D). A uniform encoding is used for the first few points. (Even though the encoding
procedure is called “online”, it does not mean that only the most recent sample is used to
update the parameter 𝜃: the optimization procedure 𝜃 can be any predefined technique using
all the previous samples (𝑥1:𝑘, 𝑦1:𝑘), only requiring that the algorithm has an explicit stopping
criterion.) This yields the following description length:

Definition 3.4 (Prequential code). Given a model 𝑝𝜃, a learning algorithm 𝜃(𝑥1:𝑘, 𝑦1:𝑘), and
retraining timesteps 1 = 𝑡0 < 𝑡1 < ... < 𝑡𝑆 = 𝑛, the prequential codelength is

𝐿preq(𝑦1:𝑛|𝑥1:𝑛) = 𝑡1 log2𝐾 +

𝑆−1∑︁
𝑠=0

− log2 𝑝𝜃𝑡𝑠
(𝑦𝑡𝑠+1:𝑡𝑠+1

|𝑥𝑡𝑠+1:𝑡𝑠+1
) (3.3.6)

where for each 𝑠, 𝜃𝑡𝑠 = 𝜃(𝑥1:𝑡𝑠 , 𝑦1:𝑡𝑠) is the parameter learned on data samples 1 to 𝑡𝑠.

The model parameters are never encoded explicitly in this method. The difference between
the prequential codelength 𝐿preq(𝑦1:𝑛|𝑥1:𝑛) and the log-loss

∑︀𝑛
𝑡=1− log2 𝑝𝜃𝑡𝐾

(𝑦𝑡|𝑥𝑡) of the final
trained model, can be interpreted as the amount of information that the trained parameters
contain about the data contained: the former is the data codelength if Bob does not know the
parameters, while the latter is the codelength of the same data knowing the parameters.

Prequential codes depend on the performance of the underlying training algorithm, and
take advantage of the model’s generalization ability from the previous data to the next. In
particular, the model training should yield good generalization performance from data [1; 𝑡𝑠] to
data [𝑡𝑠 + 1; 𝑡𝑠+1].

In practice, optimization procedures for neural networks may be stochastic (initial values,
dropout, data augmentation...), and Alice and Bob need to make all the same random actions in
order to get the same final model. A possibility is to agree on a random seed 𝜔 (or pseudorandom
numbers) beforehand, so that the random optimization procedure 𝜃(𝑥1:𝑡𝑠 , 𝑦1:𝑡𝑠) is deterministic
given 𝜔, Hyperparameters may also be transmitted first (the cost of sending a few numbers is
small).

Prequential coding with deep models provides excellent compression bounds. On MNIST, we
computed the description length of the labels with different networks (Appendix 3.D). The best
compression bound was given by a convolutional network of depth 8. It achieved a description
length of 4.10 kbits, i.e., a compression ratio of 0.021, with 99.5% test set accuracy (Table 3.1).
This codelength is 6 times smaller than the variational codelength.

On CIFAR, we tested a simple multilayer perceptron, a shallow network, a small convolutional
network, and a VGG convolutional network (Simonyan and Zisserman, 2014) first without data
augmentation or batch normalization (VGGa) (Ioffe and Szegedy, 2015), then with both of
them (VGGb) (Appendix 3.D). The results are in Figure 3.2. The best compression bound
was obtained with VGGb, achieving a codelength of 45.3 kbits, i.e., a compression ratio of 0.27,
and 93% test set accuracy (Table 3.1). This codelength is twice smaller than the variational
codelength. The difference between VGGa and VGGb also shows the impact of the training
procedure on codelengths for a given architecture.
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Figure 3.2: Prequential code results on CIFAR. Results of prequential encoding on CIFAR
with 5 different models: a small Multilayer Perceptron (MLP), a shallow network, a small
convolutional layer (tinyCNN), a VGG-like network without data augmentation and batch
normalization (VGGa) and the same VGG-like architecture with data augmentation and batch
normalization (VGGb) (see Appendix 3.D). Performance is reported during online training, as
a function of the number of samples seen so far. Top left: codelength per sample (log loss) on a
pack of data [𝑡𝑘; 𝑡𝑘+1) given data [1; 𝑡𝑘). Bottom left: test accuracy on a pack of data [𝑡𝑘; 𝑡𝑘+1)
given data [1; 𝑡𝑘), as a function of 𝑡𝑘. Top right: difference between the prequential cumulated
codelength on data [1; 𝑡𝑘], and the uniform encoding. Bottom right: compression ratio of the
prequential code on data [1; 𝑡𝑘].

Model Switching. A weakness of prequential codes is the catch-up phenomenon (Van Erven
et al., 2012). Large architectures might overfit during the first steps of the prequential encoding,
when the model is trained with few data samples. Thus the encoding cost of the first packs of
data might be worse than with the uniform code. Even after the encoding cost on current labels
becomes lower, the cumulated codelength may need a lot of time to “catch up” on its initial lag.
In Fig. 3.2, the VGGb model needs 5,000 samples on CIFAR to reach a cumulative compression
ratio <1, even though the encoding cost per label becomes drops below uniform after just 1,000
samples. This is efficiently solved by switching (Van Erven et al., 2012) between models (see
Appendix 3.E). Switching further improves the practical compression bounds (Fig. 3.3, Table
3.2).

3.4 Discussion

Too Many Parameters in Deep Learning Models? >From an information theory
perspective, the goal of a model is to extract as much mutual information between the labels
and inputs as possible—equivalently (Section 3.2.4), to compress the labels. This cannot be
achieved with 2-part codes or practical network compression. With the variational code, the
models do compress the data, but with a worse prediction performance: one could conclude
that deep learning models that achieve the best prediction performance cannot compress the
data.

Thanks to the prequential code, we have seen that deep learning models, even with a large
number of parameters, compress the data well: from an information theory point of view, the
number of parameters is not an obstacle to compression. This is consistent with Chaitin’s
hypothesis that “comprehension is compression”, contrary to previous observations with the
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variational code.

Prequential Code and Generalization. The prequential encoding shows that a model
that generalizes well for every dataset size, will compress well. The efficiency of the prequential
code is directly due to the generalization ability of the model at each time.

Theoretically, three of the codes (two-parts, Bayesian, and prequential based on a maximum
likelihood or MAP estimator) are known to be asymptotically equivalent under strong assump-
tions (𝑑-dimensional identifiable model, data coming from the model, suitable Bayesian prior, and
technical assumptions ensuring the effective dimension of the trained model is not lower than 𝑑):
in that case, these three methods yield a codelength 𝐿(𝑦1:𝑛|𝑥1:𝑛) = 𝑛𝐻(𝑌 |𝑋) + 𝑑

2 log2 𝑛+𝒪(1)
(Grünwald, 2007). This corresponds to the BIC criterion for model selection. Hence there was
no obvious reason for the prequential code to be an order of magnitude better than the others.

However, deep learning models do not usually satisfy any of these hypotheses. Moreover,
our prequential codes are not based on the maximum likelihood estimator at each step, but
on standard deep learning methods (so training is regularized at least by dropout and early
stopping).

Inefficiency of Variational Models for Deep Networks. The objective of variational
methods is equivalent to minimizing a description length. Thus, on our image classification
tasks, variational methods do not have good results even for their own objective, compared to
prequential codes. This makes their relatively poor results at test time less surprising.

Understanding this observed inefficiency of variational methods is an open problem. As
stated in (3.3.4), the variational codelength is an upper bound for the Bayesian codelength.
More precisely,

𝐿var
𝛽 (𝑦1:𝑛|𝑥1:𝑛) = 𝐿Bayes(𝑦1:𝑛|𝑥1:𝑛) + KL (𝑝Bayes(𝜃|𝑥1:𝑛, 𝑦1:𝑛)‖𝛽) (3.4.1)

with notation as above, and with 𝑝Bayes(𝜃|𝑥1:𝑛, 𝑦1:𝑛) the Bayesian posterior on 𝜃 given the data.
Empirically, on MNIST and CIFAR, we observe that 𝐿preq(𝑦1:𝑛|𝑥1:𝑛)≪ 𝐿var

𝛽 (𝑦1:𝑛|𝑥1:𝑛).
Several phenomena could contribute to this gap. First, the optimization of the parameters 𝜙

of the approximate Bayesian posterior might be imperfect. Second, even the optimal distribution
𝛽* in the variational class might not approximate the posterior 𝑝Bayes(𝜃|𝑥1:𝑛, 𝑦1:𝑛) well, leading
to a large KL term in (3.4.1); this would be a problem with the choice of variational posterior
class 𝛽. On the other hand we do not expect the choice of Bayesian prior to be a key factor:
we tested Gaussian priors with various variances as well as a conjugate Gaussian prior, with
similar results. Moreover, Gaussian initializations and L2 weight decay (acting like a Gaussian
prior) are common in deep learning. Finally, the (untractable) Bayesian codelength based on
the exact posterior might itself be larger than the prequential codelength. This would be a
problem of underfitting with parametric Bayesian inference, perhaps related to the catch-up
phenomenon or to the known conservatism of Bayesian model selection (end of Section 3.3.3).

3.5 Conclusion

Deep learning models can represent the data together with the model in fewer bits than a naive
encoding, despite their many parameters. However, we were surprised to observe that variational
inference, though explicitly designed to minimize such codelengths, provides very poor such
values compared to a simple incremental coding scheme. Understanding this limitation of
variational inference is a topic for future research.





Appendix

3.A Fake labels are not compressible

In the introduction, we stated that fake labels could not be compressed. This means that the optimal codelength
for this labels is almost the uniform one. This can be formalized as follows. We define a code for 𝑦1:𝑛 as any
program (in a reference Turing machine) that outputs 𝑦1:𝑛, and denote 𝐿(𝑦1:𝑛) the length of this program, or
𝐿(𝑦1:𝑛|𝑥1:𝑛) for programs that may use 𝑥1:𝑛 as their input.

Proposition 3.5. Assume that 𝑥1, ..., 𝑥𝑛 are inputs, and that 𝑌1, ..., 𝑌𝑛 are iid random labels uniformly sampled
in {1, ...,𝐾}. Then for any 𝛿 ∈ N*, with probability 1− 2−𝛿 the values 𝑌1, . . . , 𝑌𝑛 satisfy that for any possible
coding procedure 𝐿 (even depending on the values of 𝑥1:𝑛), the codelength of 𝑌1:𝑛 is at least

𝐿(𝑌1:𝑛|𝑥1:𝑛) ⩾ 𝑛𝐻(𝑌 )− 𝛿 − 1 (3.A.1)
= 𝑛 log2𝐾 − 𝛿 − 1. (3.A.2)

We insist that this does not require any assumptions on the coding procedure used, so this result holds for
all possible models. Moreover, this is really a property of the sampled values 𝑌1, . . . 𝑌𝑛: most values of 𝑌1:𝑛 can
just not be compressed by any algorithm.

Proof. This proposition is a standard counting argument, or an immediate consequence of Theorem 2.2.1 in
(Li and Vitányi, 2008). Let 𝒜 = {1, ...,𝐾}𝑛 be the set of all possible outcomes for the sequence of random
labels. We have |𝒜| = 𝐾𝑛. Let 𝛿 be an integer, 𝛿 ∈ N*, we want to know how many elements in 𝒜 can be
encoded in less than log2 |𝒜| − 𝛿 bits. We consider, on a given Turing machine, the number of programs of
length less than ⌊log2 |𝒜| − 𝛿⌋. This number is less than :

⌊log2 |𝒜|⌋−𝛿−1∑︁
𝑖=0

2𝑖 = 2⌊log2 |𝒜|⌋−𝛿 − 1 (3.A.3)

⩽ 2−𝛿|𝒜| − 1 (3.A.4)

Therefore, the number of elements in 𝒜 which can be described in less than log2 |𝒜| − 𝛿 bits is less than
2−𝛿|𝒜| − 1. We can deduce from this that the number of elements in 𝒜 which cannot be described by any
program in less than 2−𝛿|𝒜| − 1 bits is at least |𝒜|(1− 2−𝛿). Equivalently, there are at least |𝒜|(1− 2−𝛿)
elements (𝑦1, ..., 𝑦𝑛) in |𝒜| such that for any coding scheme, 𝐿(𝑦1:𝑛|𝑥1:𝑛) ⩾ 𝑛 log2𝐾−𝛿−1. Since the random
labels 𝑌1, ..., 𝑌𝑛 are uniformly distributed, the result follows.

3.B Technical details on compression bounds with random
affine subspaces

We describe in Algorithm 1 the detailed procedure which allows to compute compression bounds with the
random affine subspace method (Li et al., 2018). To compute the numerical results in Table 3.1, we took the
intrinsic dimension computed in the original paper, and considered that the precision of the parameter was
32 bits, following the authors’ suggestion. Then, the description length of the model itself is 32× the intrinsic
dimension. This does not take into account the description length of the labels given the model, which is
non-negligible (to take this quantity into account, we would need to know the loss on the training set of the
model, which was not specified in the original paper). Thus we only get a lower bound.

For MNIST, the model with the smaller intrinsic dimension is the LeNet, which has an intrinsic dimension of
290 for an accuracy of 90% (the threshold at which (Li et al., 2018) stop by definition, hence the performance in
Table 3.1). This leads to a description length for the model of 9280 bits, which corresponds to a 0.05 compression
ratio, without taking into account the description length of the labels given the model.

For CIFAR, again with the LeNet architecture, the intrinsic dimension is 2,900. This leads to a description
length for the model of 92800 bits, which corresponds to a 0.05 compression ratio, without taking into account
the description length of the labels given the model.
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Algorithm 1 Encoding with random affine subspaces

Alice transmits a parametric model (𝑝𝜃)𝜃∈Θ.
Alice transmits the random seed 𝜔 (if using stochastic optimization), and a dimension 𝑘.
Alice and Bob both sample a random affine subspace Θ̃ ⊂ Θ, with the seed 𝜔. This means
that they sample 𝜃0 and a matrix 𝑊 of dimension 𝑘 × 𝑑 where 𝑑 is the dimension of Θ. It
defines a new parametric model 𝑝𝜙 = 𝑝𝜃0+𝑊 ·𝜙
Alice optimizes the parameter 𝜙* with a gradient descent algoritm in order to minimize
− log2 𝑝𝜙(𝑦1:𝑛|𝑥1:𝑛).
Alice sends 𝜙* with a precision 𝜀 to Bob. It costs 𝑘 × log2 𝜀.
Alice sends the labels 𝑦1:𝑛 with the models 𝑝𝜙* . It costs − log2 𝑝𝜙*(𝑦1:𝑛|𝑥1:𝑛)

These bounds could be improved by optimizing the precision 𝜀. Indeed, reducing the precision makes the
model less accurate and increases the encoding cost of the labels with the model, but it decreases the encoding
cost of the parameters. Therefore, we could find an optimal precision 𝜀* to improve the compression bound.
This would be a topic for future work.

3.C Technical Details on Variational Learning for Sec-
tion 3.3.3

Variational learning was performed using the library Pyvarinf (Tallec and Blier, 2018).
We used a prior 𝛼 = 𝒩 (0, 𝜎2

0𝐼𝑑) with 𝜎0 = 0.05, chosen to optimize the compression bounds.
The chosen class of posterior was the class of multivariate gaussian distributions with diagonal covariance

matrix {𝒩 (𝜇,Σ) , 𝜇 ∈ R𝑑 Σ diagonal}. It was parametrized by (𝛽𝜇,𝜌)(𝜇,𝜌)∈R𝑑×R𝑑 , with 𝜎 ∈ R𝑑 defined as
𝜎𝑖 = log(1 + exp(𝜌𝑖)), and the covariance matrix Σ as the diagonal matrix with diagonal values 𝜎2

1 , ..., 𝜎
2
𝑑.

We optimize the bound (3.3.2) as a function of (𝜇, 𝜌) with a gradient descent method, and estimate its
values and gradient with a Monte-Carlo method. Since the prior and posteriors are gaussian, we have an explicit
formula for the first part of the variational loss KL(𝛽𝜇,𝜌‖𝛼) (Hinton and Van Camp, 1993). Therefore, we can
easily compute its values and gradients. For the second part

(𝜇, 𝜌)→ E𝜃∼𝛽𝜇,𝜌

[︂ 𝑛∑︁
𝑖=1

− log2 𝑝𝜃(𝑦𝑖|𝑥𝑖)
]︂
, (3.C.1)

we can use the following proposition (Graves, 2011). For any function 𝑓 : Θ→ R, we have

𝜕

𝜕𝜇𝑖
E𝜃∼𝛽𝜇,𝜌 [𝑓(𝜃)] = E𝜃∼𝛽𝜇,𝜌

[︁ 𝜕𝑓
𝜕𝜃𝑖

(𝜃)
]︁

(3.C.2)

𝜕

𝜕𝜌𝑖
E𝜃∼𝛽𝜇,𝜌 [𝑓(𝜃)] =

𝜕𝜎𝑖

𝜕𝜌𝑖
· E𝜃∼𝛽𝜇,𝜌

[︁ 𝜕𝑓
𝜕𝜃𝑖
·
𝜃𝑖 − 𝜇𝑖
𝜎𝑖

]︁
(3.C.3)

Therefore, we can estimate the values and gradients of (3.3.2) with a Monte-Carlo algorithm:

𝜕

𝜕𝜇𝑖
E𝜃∼𝛽𝜇,𝜌 [𝑓(𝜃)] ≈

𝑆∑︁
𝑠=1

𝜕𝑓

𝜕𝜃𝑖
(𝜃𝑠) (3.C.4)

𝜕

𝜕𝜌𝑖
E𝜃∼𝛽𝜇,𝜌 [𝑓(𝜃)] ≈

𝜕𝜎𝑖

𝜕𝜌𝑖
·
𝑆∑︁
𝑠=1

𝜕𝑓

𝜕𝜃𝑖
(𝜃𝑠) ·

𝜃𝑠𝑖 − 𝜇𝑖
𝜎𝑖

(3.C.5)

where 𝜃1, ..., 𝜃𝑆 are sampled from 𝛽𝜇,𝜌. In practice, we used 𝑆 = 1 both for the computations of the variational
loss and its gradients.

We used both convolutional and fully connected architectures, but in our experiments fully connected models
were better for compression. For CIFAR and MNIST, we used fully connected networks with two hidden layers
of width 256, trained with SGD, with a 0.005 learning rate and mini-batchs of size 128.

For CIFAR and MNIST, we used a LeNet-like network with 2 convolutional layers with 6 and 16 filters,
both with kernels of size 5 and 3 fully connected layers. Each convolutional is followed by a ReLU activation
and a max-pooling layer. The code will be publicly available. The first and the second fully connected layers are
of dimension 120 and 84 and are followed by ReLU activations. The last one is followed by a softmax activation
layer. The code for all models will be publicly available.

During the test phase, we sampled parameters 𝜃 from the learned distribution 𝛽, and used the model 𝑝𝜃 for
prediction. This explains why our test accuracy on MNIST is lower than other numerical results (Blundell et al.,
2015), since they use for prediction the averaged model with parameters 𝜃 = E𝜃∼𝛽𝑚,𝑟 [𝜃] = 𝜇. But our goal was
not to get the best prediction score, but to evaluate the model which was used for compression on the test set.
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Algorithm 2 Prequential encoding
Input: data 𝑥1:𝑛, 𝑦1:𝑛, timesteps 1 = 𝑡0 < 𝑡1 < ... < 𝑡𝑆 = 𝑛
Alice transmits the random seed 𝜔 (if using stochastic optimization).
Alice encodes 𝑦1:𝑡1 with the uniform code. This costs 𝑡1 log2𝐾 bits. Bob decodes 𝑦1:𝑡1 .
for 𝑠 = 1 to 𝑆 − 1 do

Alice and Bob both compute 𝜃𝑠 = 𝜃(𝑥1:𝑡𝑠 , 𝑦1:𝑡𝑠 , 𝜔).
Alice encodes 𝑦𝑡𝑠+1:𝑡𝑠+1 with model 𝑝𝜃𝑠 . This costs − log2 𝑝𝜃𝑠(𝑦𝑡𝑠+1:𝑡𝑠+1 |𝑥𝑡𝑠+1:𝑡𝑠+1) bits
Bob decodes 𝑦𝑡𝑠+1:𝑡𝑠+1

end for

3.D Technical details on prequential learning

Prequential Learning on MNIST. On MNIST, we used three different models:
1. The uniform probability over the labels.

2. A fully connected network or Multilayer Perceptron (MLP) with two hidden layers of dimension 256.

3. A VGG-like convolutional network with 8 convolutional layers with 32, 32, 64, 64, 128, 128, 256 and
256 filters respectively and max pooling operators every two convolutional layers, followed by two fully
connected layers of size 256.

For the two neural networks we used Dropout with probability 0.5 between the fully connected layers, and
optimized the network with the Adam algorithm with learning rate 0.001.

The successive timestep for the prequential learning 𝑡1, 𝑡2, ..., 𝑡𝑠 are 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
4096, 8192, 16384 and 32768.

For the prequential code results in Table 3.1, we selected the best model, which was the VGG-like network.

Prequential Learning on CIFAR. On CIFAR, we used five different models:
1. The uniform probability over the labels.

2. A fully connected network or Multilayer Perceptron (MLP) with two hidden layers of dimension 512.

3. A shallow network, with one hidden layer and width 5000.

4. A convolutional network (tinyCNN) with four convolutional layers with 32 filters, and a maxpooling
operator after every two convolutional layers. Then, two fully connected layers of dimension 256. We
used Dropout with probability 0.5 between the fully connected layers.

5. A VGG-like network with 13 convolutional layers from (Zagoruyko, 2015). We trained this architecture
with two learning procedures. The first one (VGGa) without batch-normalization and data augmentation,
and the second one (VGGb) with both of them, as introduced in (Zagoruyko, 2015). In both of them, we
used dropout regularization with parameter 0.5.

We optimized the network with the Adam algorithm with learning rate 0.001.
For prequential learning, the timesteps 𝑡1, 𝑡2, ..., 𝑡𝑠 were: 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120,

10240, 20480, 40960. The training results can be seen in Figure 3.2.
For the prequential code, all the results are in Figure 3.2. For the results in Table 3.1, we selected the best

model for the prequential code, which was VGGb.

3.E Switching between models against the catch-up phe-
nomenon

3.E.1 Switching between model classes
The solution introduced by (Van Erven et al., 2012) against the catch-up phenomenon described in Section 3.3.4,
is to switch between models, to always encode a data block with the best model at that point. That way, the
encoding adapts itself to the number of data samples seen. The switching pattern itself has to be encoded.

Assume that Alice and Bob have agreed on a set of prediction strategiesℳ = {𝑝𝑘, 𝑘 ∈ ℐ}. We define the
set of switch sequences, S = {((𝑡1, 𝑘1), ..., (𝑡𝐿, 𝑘𝐿)), 1 = 𝑡1 < 𝑡2 < ... < 𝑡𝐿 , 𝑘 ∈ ℐ}.

Let 𝑠 = ((𝑡1, 𝑘1), ..., (𝑡𝐿, 𝑘𝐿)) be a switch sequence. The associated prediction strategy 𝑝𝑠(𝑦1:𝑛|𝑥1:𝑛) uses
model 𝑝𝑘𝑖 on the time interval [𝑡𝑖; 𝑡𝑖+1), namely

𝑝𝑠(𝑦1:𝑖+1|𝑥1:𝑖+1, 𝑦1:𝑖) = 𝑝𝐾𝑖 (𝑦𝑖+1|𝑥1:𝑖+1, 𝑦1:𝑖) (3.E.1)

where 𝐾𝑖 is such that 𝐾𝑖 = 𝑘𝑙 for 𝑡𝑙 ⩽ 𝑖 < 𝑡𝑙+1. Fix a prior distribution 𝜋 over switching sequences (see (Van
Erven et al., 2012) for typical examples).
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Table 3.2: Compression bounds by switching between models. Compression bounds
given by different codes on two datasets, MNIST and CIFAR10. The Codelength is the number
of bits necessary to send the labels to someone who already has the inputs. This codelength
includes the description length of the model. The compression ratio for a given code is the
ratio between its codelength and the codelength of the uniform code. The test accuracy of a
model is the accuracy of its predictions on the test set. For variational and prequential codes,
we selected the model and hyperparameters providing the best compression bound.

Code mnist cifar10
Codelength Comp. Test Codelength Comp. Test

(kbits) Ratio Acc (kbits) Ratio Acc

Uniform 199 1. 10% 166 1. 10%

Variational 24.1 0.12 95.5% 89.0 0.54 61,6%
Prequential 4.10 0.02 99.5% 45.3 0.27 93.3%
Switch 4.05 0.02 99.5% 34.6 0.21 93.3%
Self-Switch 4.05 0.02 99.5% 34.9 0.21 93.3%

Definition 3.6 (Switch code). Assume that Alice and Bob have agreed on a set of prediction strategiesℳ and
a prior 𝜋 over S. The switch code first encodes a switch sequence 𝑠 strategy, then uses the prequential code with
this strategy:

𝐿sw
𝑠 (𝑦1:𝑛, 𝑥1:𝑛) = 𝐿𝜋(𝑠) + 𝐿preq

𝑝𝑠
(𝑦1:𝑛, 𝑥1:𝑛) = − log2 𝜋(𝑠)−

𝑛∑︁
𝑖=1

log2 𝑝
𝐾𝑖 (𝑦𝑖|𝑥1:𝑖, 𝑦1:𝑖−1) (3.E.2)

where 𝐾𝑖 is the model used by switch sequence 𝑠 at time 𝑖.

We then choose the switching strategy 𝑠* wich minimizes 𝐿sw
𝑠 (𝑦1:𝑛, 𝑥1:𝑛). We tested switching between the

uniform model, a small convolutional network (tinyCNN), and a VGG-like network with two training methods
(VGGa, VGGb) (Appendix 3.D). On MNIST, switching between models does not make much difference. On
CIFAR10, switching by taking the best model on each interval [𝑡𝑘; 𝑡𝑘+1) saves more than 11 kbits, reaching a
codelength of 34.6 kbits, and a compression ratio of 0.21. The cost 𝐿𝜋(𝑠) of encoding the switch 𝑠 is negligible
(see Table 3.2).

3.E.2 Self-Switch: Switching between variants of a model or hyperpa-
rameters

With standard switch, it may be cumbersome to work with different models in parallel. Instead, for models
learned by gradient descent, we may use the same architecture but with different parameter values corresponding
obtained at different gradient descent stopping times. This is a form of regularization via early stopping.

Let (𝑝𝜃)𝜃∈Θ be a model class. Let 𝜃𝑗(𝑥1:𝑘, 𝑦1:𝑘) be the parameter obtained by some optimization procedure
after 𝑗 epochs of training on data [1; 𝑘]. For instance, 𝑗 = 0 would correspond to using an untrained model
(usually close to the uniform model).

We call self-switch code the switch code obtained by switching among the family of models with different
gradient descent stopping times 𝑗 (based on the same parametric family (𝑝𝜃)𝜃∈Θ). In practice, this means that
at each step of the prequential encoding, after having seen data [1; 𝑡𝑘), we train the model on those data and
record, at each epoch 𝑗, the loss obtained on data [𝑡𝑘; 𝑡𝑘+1). We then switch optimally between those. We incur
the small additional cost of encoding the best number of epochs to be used (which was limited to 10) at each
step.

The catch-up phenomenon and the beneficial effect of the self-switch code can be seen in Figure 3.3.
The self-switch code achieves similar compression bounds to the switch code, while storing only one network.

On MNIST, there is no observable difference. On CIFAR, self-switch is only 300 bits (0.006 bit/label) worse
than full 4-architecture switch.
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Figure 3.3: Compression with the self-switch method: Results of the self-switch code on
CIFAR with 2 different models: the shallow network, and the VGG-like network trained with
data augmentation and batch normalization (VGGb). Performance is reported during online
training, as a function of the number of samples seen so far. Top: test accuracy on a pack
of data [𝑡𝑘; 𝑡𝑘+1) given data [1; 𝑡𝑘), as a function of 𝑡𝑘. Second: codelength per sample (log
loss) on a pack of data [𝑡𝑘; 𝑡𝑘+1) given data [1; 𝑡𝑘). Third: difference between the prequential
cumulated codelength on data [1; 𝑡𝑘], and the uniform encoding. Bottom: compression ratio of
the prequential code on data [1; 𝑡𝑘]. The catch-up phenomenon is clearly visible for both models:
even if models with and without the self-switch have similar performances after a training on
the entire dataset, the standard model has lower performances than the uniform model (for the
1280 first labels for the VGGb network, and for the 10,000 first labels for the shallow network),
and the code length for these first labels is large. The self-switch method solves this problem.
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Chapter 4

Learning with All Learning Rates
At Once

In this chapter, we present the published paper:

Blier, L., Wolinski, P., and Ollivier, Y. (2019). Learning with Random Learning
Rates. In ECML PKDD 2019 - European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases

This project started from discussions on how to design a learning system able both to adapt
very quickly to new observed patterns, but also to learn complex patterns which might require
a slow learning. I was starting to work in Reinforcement Learning at that time. In RL, the
learning setting is non-stationnary : the distribution of observations can change while the agent
is improving its policy, and the learning methods has to be able to adapt to all of these regimes.
My co-author Pierre Wolinski was interested in topics in AutoML (Guyon et al., 2016). From
this viewpoint, a learning system has to be able to adapt to multiple learning settings without
any hyperparameter tuning, such as settings which would require small or large learning rates.
Many methods were designed to directly set optimal per-parameter learning rates (Tieleman
and Hinton, 2012; Kingma and Ba, 2015), such as the popular Adam optimizer, but they still
require some hyperparameter tuning. This discussion lead to the idea of a learning system
which would be a mixture of slow learning units, and fast learning units, by learning with all
learning rates at once.

4.1 Introduction

Deep learning models require delicate hyperparameter tuning (Zoph and Le, 2016): when facing
new data or new model architectures, finding a configuration that enables fast learning requires
both expert knowledge and extensive testing. This prevents deep learning models from working
out-of-the-box on new problems without human intervention (AutoML setup, Guyon et al.
(2016)). One of the most critical hyperparameters is the learning rate of the gradient descent
(Theodoridis, 2015, p. 892). With too large learning rates, the model does not learn; with too
small learning rates, optimization is slow and can lead to local minima and poor generalization
(Jastrzebski et al., 2017; Kurita, 2018; Mack, 2016; Surmenok, 2017).

Efficient methods with no learning rate tuning are a necessary step towards more robust
learning algorithms, ideally working out of the box. Many methods were designed to directly
set optimal per-parameter learning rates (Tieleman and Hinton, 2012; Duchi et al., 2011;
Kingma and Ba, 2015; Schaul et al., 2013; LeCun et al., 1998b), such as the popular Adam
optimizer. The latter comes with default hyperparameters which reach good performance on
many problems and architectures; yet fine-tuning and scheduling of its learning rate is still
frequently needed (Denkowski and Neubig, 2017), and the default setting is specific to current
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problems and architecture sizes. Indeed Adam’s default hyperparameters fail in some natural
setups (Section 4.6.2). This makes it unfit in an out-of-the-box scenario.

We propose All Learning Rates At Once (Alrao), a gradient descent method for deep learning
models that leverages redundancy in the network. Alrao uses multiple learning rates at the
same time in the same network, spread across several orders of magnitude. This creates a
mixture of slow and fast learning units. Alrao departs from the usual philosophy of trying
to find the “right” learning rates; instead we take advantage of the overparameterization of
network-based models to produce a diversity of behaviors from which good network outputs
can be built. The width of the architecture may optionally be increased to get enough units
within a suitable learning rate range, but surprisingly, performance was largely satisfying even
without increasing width.

Our contributions are as follows:

• We introduce Alrao, a gradient descent method for deep learning models with no learning
rate tuning, leveraging redundancy in deep learning models via a range of learning rates in
the same network. Surprisingly, Alrao does manage to learn well over a range of problems
from image classification, text prediction, and reinforcement learning.

• In our tests, Alrao’s performance is always close to that of SGD with the optimal learning
rate, without any tuning.

• Alrao combines performance with robustness: not a single run failed to learn with the
default learning rate range we used. In contrast, our parameter-free baseline, Adam with
default hyperparameters, is not reliable across the board.

• Alrao vindicates the role of redundancy in deep learning: having enough units with a
suitable learning rate is sufficient for learning.

Acknowledgments. We would like to thank Corentin Tallec for his technical help and
extensive remarks. We thank Olivier Teytaud for pointing useful references, Hervé Jégou for
advice on the text, and Léon Bottou, Guillaume Charpiat, and Michèle Sebag for their remarks
on our ideas.

4.2 Related Work

Redundancy in deep learning. Alrao specifically exploits the redundancy of units in
network-like models. Several lines of work underline the importance of such redundancy in deep
learning. For instance, dropout (Srivastava et al., 2014) relies on redundancy between units.
Similarly, many units can be pruned after training without affecting accuracy (LeCun et al.,
1990; Han et al., 2015a,b; See et al., 2016). Wider networks have been found to make training
easier (Bengio et al., 2006; Hinton et al., 2015; Zhang et al., 2017a), even if not all units are
useful a posteriori.

The lottery ticket hypothesis (Frankle and Carbin, 2018; Frankle et al., 2019) posits that
“large networks that train successfully contain subnetworks that—when trained in isolation—
converge in a comparable number of iterations to comparable accuracy’. This subnetwork is
the lottery ticket winner : the one which had the best initial values. In this view, redundancy
helps because a larger network has a larger probability to contain a suitable subnetwork. Alrao
extends this principle to the learning rate.

Learning rate tuning. Automatically using the “right” learning rate for each parameter was
one motivation behind “adaptive” methods such as RMSProp (Tieleman and Hinton, 2012),
AdaGrad (Duchi et al., 2011) or Adam (Kingma and Ba, 2015). Adam with its default setting is
currently considered the default method in many works (Wilson et al., 2017). However, further
global adjustment of the Adam learning rate is common (Liu et al., 2018a). Other heuristics for
setting the learning rate have been proposed (Schaul et al., 2013); these heuristics often start
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with the idea of approximating a second-order Newton step to define an optimal learning rate
(LeCun et al., 1998b). Indeed, asymptotically, an arguably optimal preconditioner is either the
Hessian of the loss (Newton method) or the Fisher information matrix (Amari, 1998). Another
approach is to perform gradient descent on the learning rate itself through the whole training
procedure (Jacobs, 1988; Schraudolph, 1999; Mahmood et al., 2012; Maclaurin et al., 2015;
Massé and Ollivier, 2015; Baydin et al., 2018). Despite being around since the 80’s (Jacobs,
1988), this has not been widely adopted, because of sensitivity to hyperparameters such as
the meta-learning rate or the initial learning rate (Erraqabi and Le Roux, 2018). Of all these
methods, Adam is probably the most widespread at present (Wilson et al., 2017), and we use it
as a baseline.

The learning rate can also be optimized within the framework of architecture or hyperparam-
eter search, using methods from from reinforcement learning (Zoph and Le, 2016; Baker et al.,
2016; Li et al., 2017), evolutionary algorithms (Stanley and Miikkulainen, 2002; Jozefowicz
et al., 2015; Real et al., 2017), Bayesian optimization (Bergstra et al., 2013), or differentiable
architecture search (Liu et al., 2018b). Such methods are resource-intensive and do not allow
for finding a good learning rate in a single run.

4.3 Motivation and Outline

We first introduce the general ideas behind Alrao. The detailed algorithm is explained in
Section 4.4 and in Algorithm 3. We also release a Pytorch (Paszke et al., 2017) implementation,
including tutorials: http://github.com/leonardblier/alrao.

Different learning rates for different units. Instead of using a single learning rate for
the model, Alrao samples once and for all a learning rate for each unit in the network. These
rates are taken from a log-uniform distribution in an interval [𝜂min; 𝜂max]. The log-uniform
distribution produces learning rates spread over several order of magnitudes, mimicking the
log-uniform grids used in standard grid searches on the learning rate.

A unit corresponds for example to a feature or neuron for fully connected networks, or to a
channel for convolutional networks. Thus we build “slow-learning” and “fast-learning” units. In
contrast, with per-parameter learning rates, every unit would have a few incoming weights with
very large learning rates, and possibly diverge.

Intuition. Alrao is inspired by the fact that not all units in a neural network end up being
useful. Our idea is that in a large enough network with learning rates sampled randomly per
unit, a sub-network made of units with a good learning rate will learn well, while the units
with a wrong learning rate will produce useless values and just be ignored by the rest of the
network. Units with too small learning rates will not learn anything and stay close to their
initial values; this does not hurt training (indeed, even leaving some weights at their initial
values, corresponding to a learning rate 0, does not hurt training [Appendix 4.G]). Units with
a too large learning rate may produce large activation values, but those will be mitigated
by subsequent normalizing mechanisms in the computational graph, such as sigmoid/tanh
activations or BatchNorm.

Alrao can be interpreted within the lottery ticket hypothesis (Frankle and Carbin, 2018):
viewing the per-unit learning rates of Alrao as part of the initialization, this hypothesis suggests
that in a wide enough network, there will be a sub-network whose initialization (both values
and learning rate) leads to good convergence.

Slow and fast learning units for the output layer. Sampling a learning rate per unit at
random in the last layer would not make sense. For classification, each unit in the last layer
represents a single category: using different learning rates for these units would favor some
categories during learning. Moreover for scalar regression tasks there is only one output unit,
thus we would be back to selecting a single learning rate.

http://github.com/leonardblier/alrao
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Figure 4.1: Left: a standard fully connected neural network for a classification task with three
classes, made of several internal layers and an output layer. Right: Alrao version of the same
network. The single classifier layer is replaced with a set of parallel copies of the original
classifier, averaged with a model averaging method. Each unit uses its own learning rate for its
incoming weights (represented by different styles of arrows).

The simplest way to obtain the best of several learning rates for the last layer, without
relying on heuristics to guess an optimal value, is to use model averaging over several copies
of the output layer (Fig. 4.1), each copy trained with its own learning rate from the interval
Appendix 4.B contains a proof (under convexity assumptions) that this mechanism works. All
these untied copies of the output layer share the same Alrao internal layers (Fig. 4.1). This can
be seen as a smooth form of model selection or grid-search over the output layer learning rate;
actually, this part of the architecture can even be dropped after a few epochs (Appendix 4.C),
as the model averaging quickly concentrates on one model.

Increasing network width. With Alrao, neurons with unsuitable learning rates will not
learn: those with too large learning rates might learn no useful signal, while those with too
small learning rates will learn too slowly. Thus, Alrao may reduce the effective width of the
network to only a fraction of the actual architecture width, depending on [𝜂min; 𝜂max]. This
may be compensated by multiplying the width of the network by a factor 𝛾. Our first intuition
was that 𝛾 > 1 would be necessary; still Alrao turns out to work well even without width
augmentation.

4.4 All Learning Rates At Once: Description

4.4.1 Notation

We now describe Alrao more precisely for deep learning models with softmax output, on
classification tasks; the case of regression is similar.

Let 𝒟 = {(𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁 )}, with 𝑦𝑖 ∈ {1, ...,𝐾}, be a classification dataset. The goal
is to predict the 𝑦𝑖 given the 𝑥𝑖, using a deep learning model Φ𝜃. For each input 𝑥, Φ𝜃(𝑥) is a
probability distribution over {1, ...,𝐾}, and we want to minimize the categorical cross-entropy
loss ℓ over the dataset: 1

𝑁

∑︀
𝑖 ℓ(Φ𝜃(𝑥𝑖), 𝑦𝑖).
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We denote log-𝒰(·; 𝜂min, 𝜂max) the log-uniform probability distribution on an interval
[𝜂min; 𝜂max]. Namely, if 𝜂 ∼ log-𝒰(·; 𝜂min, 𝜂max), then log 𝜂 is uniformly distributed between
log 𝜂min and log 𝜂max. Its density function is log-𝒰(𝜂; 𝜂min, 𝜂max) =

1
𝜂

1𝜂min⩽𝜂⩽𝜂max

log(𝜂max)−log(𝜂min)
.

Algorithm 3 Alrao-SGD for model Φ𝜃 = 𝐶𝜃out ∘ 𝜙𝜃r with 𝑁out classifiers
and learning rates in [𝜂min; 𝜂max]

𝑎𝑗 ← 1/𝑁out for each 1 ⩽ 𝑗 ⩽ 𝑁out {Initialize the 𝑁out model averaging weights 𝑎𝑗}
ΦAlrao
𝜃 (𝑥) :=

∑︀𝑁out

𝑗=1 𝑎𝑗 𝐶𝜃out
𝑗

(𝜙𝜃int(𝑥)) {Define the Alrao architecture}
for layers 𝑙, for all unit 𝑖 in layer 𝑙 do

Sample 𝜂𝑙,𝑖 ∼ log-𝒰(.; 𝜂min, 𝜂max). {Sample a learning rate for each unit}
end for
for Classifiers 𝑗, 1 ⩽ 𝑗 ⩽ 𝑁out do

Define log 𝜂𝑗 = log 𝜂min + 𝑗−1
𝑁out−1 log

𝜂max

𝜂min
. {Set a learning rate for each classifier}

end for
while Stopping criterion is False do
𝑧𝑡 ← 𝜙𝜃int(𝑥𝑡) {Store the output of the last internal layer}
for layers 𝑙, for all unit 𝑖 in layer 𝑙 do
𝜃𝑙,𝑖 ← 𝜃𝑙,𝑖 − 𝜂𝑙,𝑖 · ∇𝜃𝑙,𝑖ℓ(ΦAlrao

𝜃 (𝑥𝑡), 𝑦𝑡) {Update the repr. netw. weights}
end for
for Classifier 𝑗 do
𝜃out𝑗 ← 𝜃out𝑗 − 𝜂𝑗 · ∇𝜃out

𝑗
ℓ(𝐶𝜃out

𝑗
(𝑧𝑡), 𝑦𝑡) {Update the classifiers’ weights}

end for
𝑎← ModelAveraging(𝑎, (𝐶𝜃out

𝑖
(𝑧𝑡))𝑖, 𝑦𝑡) {Update the model averaging weights.}

𝑡← 𝑡+ 1 mod 𝑁
end while

4.4.2 Alrao Architecture

Multiple Alrao output layers. A deep learning model Φ𝜃 for classification can be de-
composed into two parts: first, internal layers compute some function 𝑧 = 𝜙𝜃int(𝑥) of the
inputs 𝑥, fed to a final output (classifier) layer 𝐶𝜃out , so that the overall network output is
Φ𝜃(𝑥) := 𝐶𝜃out(𝜙𝜃int(𝑥)). For a classification task with 𝐾 categories, the output layer 𝐶𝜃out is
defined by 𝐶𝜃out(𝑧) := softmax ∘

(︀
𝑊𝑇 𝑧 + 𝑏

)︀
with 𝜃out := (𝑊, 𝑏), and softmax(𝑢1, ..., 𝑢𝐾)𝑘 :=

𝑒𝑢𝑘/ (
∑︀
𝑖 𝑒
𝑢𝑖).

In Alrao, we build multiple copies of the original output layer, with different learning rates
for each, and then use a model averaging method among them. The averaged classifier and the
overall Alrao model are:

𝐶Alrao
𝜃out (𝑧) :=

𝑁out∑︁
𝑗=1

𝑎𝑗 𝐶𝜃out𝑗
(𝑧), ΦAlrao

𝜃 (𝑥) := 𝐶Alrao
𝜃out (𝜙𝜃int(𝑥)) (4.4.1)

where the 𝐶𝜃out
𝑗

are copies of the original classifier layer, with non-tied parameters, and
𝜃out := (𝜃out1 , ..., 𝜃out𝑁out

). The 𝑎𝑗 are the parameters of the model averaging, with 0 ⩽ 𝑎𝑗 ⩽ 1 and∑︀
𝑗 𝑎𝑗 = 1. The 𝑎𝑗 are not updated by gradient descent, but via a model averaging method

from the literature (see below).

Increasing the width of internal layers. As explained in Section 4.3, we may compensate
the effective width reduction in Alrao by multiplying the width of the network by a factor 𝛾.
This means multiplying the number of units (or filters for a convolutional layer) of all internal
layers by 𝛾.
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4.4.3 Alrao Update for the Internal Layers: A Random Learning Rate
for Each Unit

In the internal layers, for each unit 𝑖 in each layer 𝑙, a learning rate 𝜂𝑙,𝑖 is sampled from the
probability distribution log-𝒰(.; 𝜂min, 𝜂max), once and for all at the beginning of training. 1

The incoming parameters of each unit in the internal layers are updated in the usual SGD
way, only with per-unit learning rates (Eq. 4.4.2): for each unit 𝑖 in each layer 𝑙, its incoming
parameters are updated as:

𝜃𝑙,𝑖 ← 𝜃𝑙,𝑖 − 𝜂𝑙,𝑖 · ∇𝜃𝑙,𝑖ℓ(ΦAlrao
𝜃 (𝑥), 𝑦) (4.4.2)

where ΦAlrao
𝜃 is the Alrao loss (4.4.1) defined above.

What constitutes a unit depends on the type of layers in the model. In a fully connected
layer, each component of a layer is considered as a unit for Alrao: all incoming weights of the
same unit share the same Alrao learning rate. On the other hand, in a convolutional layer we
consider each convolution filter as constituting a unit: there is one learning rate per filter (or
channel), thus preserving translation-invariance over the input image. In LSTMs, we apply the
same learning rate to all components in each LSTM cell (thus the vector of learning rates is the
same for input gates, for forget gates, etc.).

We set a learning rate per unit, rather than per parameter. Otherwise, every unit would
have some parameters with large learning rates, and we would expect even a few large incoming
weights to be able to derail a unit. Having diverging parameters within every unit is hurtful,
while having diverging units in a layer is not necessarily hurtful since the next layer can learn
to disregard them.

4.4.4 Alrao Update for the Output Layer: Model Averaging from
Output Layers Trained with Different Learning Rates

Learning the output layers. The 𝑗-th copy 𝐶𝜃out𝑗
of the classifier layer is attributed a

learning rate 𝜂𝑗 defined by log 𝜂𝑗 := log 𝜂min+
𝑗−1

𝑁out−1 log
(︁
𝜂max

𝜂min

)︁
, so that the classifiers’ learning

rates are log-uniformly spread on the interval [𝜂min; 𝜂max]. Then the parameters 𝜃out𝑗 of each
classifier 𝑗 are updated as if this classifier alone was the only output of the model:

𝜃out𝑗 ← 𝜃out𝑗 − 𝜂𝑗 · ∇𝜃out𝑗
ℓ(𝐶𝜃out𝑗

(𝜙𝜃int(𝑥)), 𝑦), (4.4.3)

(still sharing the same internal layers 𝜙𝜃int). This ensures that classifiers with low weights 𝑎𝑗 still
learn, and is consistent with model averaging philosophy. Algorithmically this requires differen-
tiating the loss 𝑁out times with respect to the last layer, but no additional backpropagations
through the internal layers.

Model averaging. To set the weights 𝑎𝑗 , several model averaging techniques are available,
such as Bayesian Model Averaging (Wasserman, 2000). We use the Switch model averaging (Van
Erven et al., 2012), a Bayesian method which is both simple, principled, and very responsive
to changes in performance of the various models. After each mini-batch, the switch computes
a modified posterior distribution (𝑎𝑗) over the classifiers. This computation is directly taken
from (Van Erven et al., 2012) and explained in Appendix 4.A.

Additional experiments in Appendix 4.C show that the model averaging method acts like a
smooth model selection procedure: after only a few hundreds gradient steps, a single output layer
is selected, with its parameter 𝑎𝑗 very close to 1. Actually, Alrao’s performance is unchanged if
the extraneous output layer copies are thrown away when the posterior weight 𝑎𝑗 of one of the
copies gets close to 1.

1With learning rates resampled at each time, each step would be, in expectation, an ordinary SGD step with
learning rate E𝜂𝑙,𝑖, thus just yielding an ordinary SGD trajectory with more variance.
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Table 4.1: Performance of Alrao, SGD with tuned learning rate, and Adam with its default
setting. Three convolutional models are reported for image classification on CIFAR10, three
others for ImageNet, one recurrent model for character prediction (Penn Treebank), and two
experiments on RL problems. Four of the image classification architectures are further tested
with a width multiplication factor 𝛾 = 3. Alrao learning rates are taken in a wide, a priori
reasonable interval [𝜂min; 𝜂max] = [10−5; 10], and the optimal learning rate for SGD is chosen
in the set {10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}. Each experiment is run 10 times (CIFAR10
and RL), 5 times (PTB) or 1 time (ImageNet); the confidence intervals report the standard
deviation over these runs. For RL tasks, the return has to be maximized, not minimized.

Model SGD with optimal LR Adam - Default Alrao

LR Loss Top1 (%) Loss Top1 (%) Loss Top1 (%)

CIFAR10
MobileNet 0.1 0.37 ± .01 90.2 ± .3 1.01 ± .95 78 ± 11 0.42 ± .02 88.1 ± .6
MobileNet, 𝛾 = 3 0.1 0.33 ± .01 90.3 ± .5 0.32 ± .02 90.8 ± .4 0.35 ± .01 89.0 ± .6
GoogLeNet 0.01 0.45 ± .05 89.6 ± 1. 0.47 ± .04 89.8 ± .4 0.47 ± .03 88.9 ± .8
GoogLeNet, 𝛾 = 3 0.1 0.34 ± .02 90.5 ± .8 0.41 ± .02 88.6 ± .6 0.37 ± .01 89.8 ± .8
VGG19 0.1 0.42 ± .02 89.5 ± .2 0.43 ± .02 88.9 ± .4 0.45 ± .03 87.5 ± .4
VGG19, 𝛾 = 3 0.1 0.35 ± .01 90.0 ± .6 0.37 ± .01 89.5 ± .8 0.381 ± .004 88.4 ± .7

ImageNet
AlexNet 0.01 2.15 53.2 6.91 0.10 2.56 43.2
Densenet121 1 1.35 69.7 1.39 67.9 1.41 67.3
ResNet50 1 1.49 67.4 1.39 67.1 1.42 67.5
ResNet50, 𝛾 = 3 - - - 1.99 60.8 1.33 70.9

Penn Treebank
LSTM 1 1.566 ± .003 66.1 ± .1 1.587 ± .005 65.6 ± .1 1.706 ± .004 63.4 ± .1

RL Return Return Return
Pendulum 0.0001 −372 ± 24 −414 ± 64 −371 ± 36
LunarLander 0.1 188 ± 23 155 ± 23 186 ± 45

4.5 Experimental Setup

We tested Alrao on various convolutional networks for image classification (Imagenet and
CIFAR10), on LSTMs for text prediction, and on reinforcement learning problems. We always
use the same learning rate interval [10−5; 10], corresponding to the values we would have tested
in a grid search, and 10 Alrao output layer copies, for every task.

We compare Alrao to SGD with an optimal learning rate selected in the set {10−5, 10−4,
10−3, 10−2, 10−1, 1., 10.}, and, as a tuning-free baseline, to Adam with its default setting
(𝜂 = 10−3, 𝛽1 = 0.9, 𝛽2 = 0.999), arguably the current default method (Wilson et al., 2017).

The results are presented in Table 4.1. Fig. 4.2 presents learning curves for AlexNet and
Resnet50 on ImageNet, with additional curves in Appendix 4.D.

4.5.1 Image Classification on ImageNet and CIFAR10

For image classification, we used the ImageNet (Deng et al., 2009) and CIFAR10 (Krizhevsky,
2009) datasets. The ImageNet dataset is made of 1,283,166 training and 60,000 testing data;
we split the training set into a smaller training set and a validation set with 60,000 samples.
We do the same on CIFAR10: the 50,000 training samples are split into 40,000 training samples
and 10,000 validation samples.

For each architecture, training was stopped when the validation loss had not improved for
20 epochs. The epoch with best validation loss was selected and the corresponding model tested
on the test set. The inputs are normalized, and training used data augmentation: random
cropping and random horizontal flipping (see Appendix 4.D for details). For CIFAR10, each
setting was run 10 times: the confidence intervals presented are the standard deviation over
these runs. For ImageNet, because of high computation time, we performed only a single run
per experiment.

We tested Alrao on several standard architectures. On ImageNet, we tested Resnet50 (He
et al., 2016), Densenet121 (Huang et al., 2017), and Alexnet (Krizhevsky, 2014), using the
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(b) AlexNet trained on ImageNet

Figure 4.2: Learning curves for Alrao, SGD with various learning rates, and Adam with its
default setting, on ImageNet. Left: training loss; right: test loss. Curves are interrupted by the
early stopping criterion. Alrao’s performance is comparable to the optimal SGD learning rate.

default Pytorch implementation. On CIFAR10, we tested GoogLeNet (Szegedy et al., 2015),
VGG19 (Simonyan and Zisserman, 2014), and MobileNet (Howard et al., 2017), as implemented
in (Kianglu, 2018). We also tested wider architectures, with a width multiplication factor 𝛾 = 3.
On the largest model, Resnet50 on ImageNet with triple width, systematic SGD learning rate
grid search was not performed due to the excessive computational burden, hence the omitted
value in Tab. 4.1.

4.5.2 Other Tasks: Text Prediction, Reinforcement Learning

Text prediction on Penn TreeBank. To test Alrao on other kinds of tasks, we first used a
recurrent neural network for text prediction on the Penn Treebank (PTB) (Marcus et al., 1993)
dataset. The Alrao experimental procedure is the same as above.

The loss in Table 4.1 is given in bits per character and the accuracy is the proportion of
correct character predictions. The model is a two-layer LSTM (Hochreiter and Schmidhuber,
1997) with an embedding size of 100, and 100 hidden units. A dropout layer with rate 0.2
is included before the decoder. The training set is divided into 20 minibatchs. Gradients
are computed via truncated backprop through time (Werbos, 1990) with truncation every 70
characters.

The model was trained for character prediction rather than word prediction. This is
technically easier for Alrao implementation: since Alrao uses copies of the output layer, memory
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issues arise for models with most parameters on the output layer. Word prediction (10,000 classes
on PTB) requires many more output parameters than character prediction; see Section 4.7 and
Appendix 4.F.

Reinforcement learning tasks. Next, we tested Alrao on two standard reinforcement learn-
ing problems: the Pendulum and Lunar Lander environments from OpenAI Gym (Brockman
et al., 2016). We use standard deep 𝑄-learning (Mnih et al., 2015). The 𝑄-network is a standard
MLP with 2 hidden layers. The experimental setting is the same as above, with regressors
instead of classifiers on the output layer. More details on the 𝑄-learning implementation are
given in Appendix 4.D. For each environment, we select the best epoch on validation runs, and
then report the return of the selected model on new test runs in that environment.

4.6 Performance and Robustness of Alrao

4.6.1 Alrao Compared to SGD with Optimal Learning Rate

First, Alrao does manage to learn; this was not obvious a priori.
Second, SGD with an optimally tuned learning rate usually performs better than Alrao.

This can be expected when comparing a tuning-free method with a method that tunes the
hyperparameter in hindsight.

Still, the difference between Alrao and optimally-tuned SGD is reasonably small across every
setup, even with wide intervals [𝜂min; 𝜂max], with a somewhat larger gap in one case (AlexNet
on ImageNet). Notably, this occurs even though SGD achieves good performance only for a few
learning rates within the interval [𝜂min; 𝜂max]. With 𝜂min = 10−5 and 𝜂max = 10, among the 7
SGD learning rates tested (10−5, 10−4, 10−3, 10−2, 10−1, 1, and 10), only three are able to learn
with AlexNet, and only one is better than Alrao (Fig. 4.2b); with ResNet50, only three are able
to learn well, and only two of them achieve performance similar to Alrao (Fig. 4.2a); on the
Pendulum environment, only two are able to learn well, only one of which converges as fast as
Alrao (Fig. 4.7d in Appendix 4.D). Appendix 4.D contains more examples.

Thus, surprisingly, Alrao manages to learn at a nearly optimal rate, even though most units
in the network have learning rates unsuited for SGD.

4.6.2 Robustness of Alrao, and Comparison to Default Adam

Overall, Alrao learns reliably in every setup in Table 4.1. Moreover, this is quite stable over
the course of learning: Alrao curves shadow optimal SGD curves over time (Fig. 4.2).

Often, Adam with its default parameters almost matches optimal SGD, but this is not always
the case. Over the 13 setups in Table 4.1, default Adam gives a significantly poor performance in
three cases. One of those is a pure optimization issue: with AlexNet on ImageNet, optimization
does not start with the default parameters (Fig. 4.2b). The other two cases are due to strong
overfit despite good train performance: MobileNet on CIFAR (Fig. 4.7c in Appendix 4.D) and
ResNet with increased width on ImageNet (Fig. 4.2a).

In two further cases, Adam achieves good validation performance in Table 4.1, but actually
overfits shortly after its peak score: ResNet (Fig. 4.2a) and DenseNet (Fig. 4.7b in Appendix 4.D),
both on ImageNet. On the whole, this confirms a known risk of overfit with Adam (Wilson
et al., 2017; Keskar and Socher, 2017).

Overall, default Adam tends to give slightly better results than Alrao when it works, but
does not learn reliably with its default hyperparameters. It can exhibit two kinds of lack of
robustness: optimization failure, and overfit or non-robustness over the course of learning. On
the other hand, every single run of Alrao reached reasonably close-to-optimal performance.
Alrao also performs steadily over the course of learning (Fig. 4.2, and Fig. 4.7b in Appendix 4.D).
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4.6.3 Sensitivity Study to test [𝜂min; 𝜂max]

We claim to remove a hyperparameter, the learning rate, but replace it with two hyperparameters
𝜂min and 𝜂max. Formally, this is true. But a systematic study of the impact of these two
hyperparameters (Fig. 4.3) shows that the sensitivity to 𝜂min and 𝜂max is much lower than the
original sensitivity to the learning rate.

To assess this, we tested every combination of 𝜂min and 𝜂max in a grid from 10−9 to 107

on GoogLeNet for CIFAR10 (left plot in Fig. 4.3, with SGD on the diagonal). The largest
satisfactory learning rate for SGD is 1 (diagonal on Fig. 4.3). Unsurprisingly, if all the learning
rates in Alrao are too large, or all too small, then Alrao fails (rightmost and leftmost zones in
Fig. 4.3). Extremely large learning rates diverge numerically, both for SGD and Alrao.
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Figure 4.3: Influence of [𝜂min; 𝜂max] and of network width on Alrao performance, with GoogLeNet
on CIFAR10. Results are reported after 15 epochs, and averaged on three runs. Left plot:
each point with coordinates [𝜂min; 𝜂max] below the diagonal represents the loss for Alrao with
this interval. Points (𝜂, 𝜂) on the diagonal represent standard SGD with learning rate 𝜂. Grey
squares represent numerical divergence (NaN). Alrao works as soon as [𝜂min; 𝜂max] contains at
least one suitable learning rate. Right plot: varying network width.

On the other hand, Alrao converges as soon as [𝜂min; 𝜂max] contains a reasonable learning
rate (central zone Fig. 4.3), even with values of 𝜂max for which SGD fails. A wide range
of choices for [𝜂min; 𝜂max] will contain one good learning rate and achieve close-to-optimal
performance. Thus, as a general rule, we recommend to just use an interval containing all the
learning rates that would have been tested in a grid search, e.g., 10−5 to 10.

For a fixed network size, one might expect Alrao to perform worse with large intervals
[𝜂min; 𝜂max], as most units would become useless. On the other hand, in a larger network, many
units would have extreme learning rates, which might disturb learning. We tested how increasing
or decreasing network width changes Alrao’s sensitivity to [𝜂min; 𝜂max] (right plot of Fig. 4.3 for
Alrao, and Fig. 4.5 in Appendix 4.D for SGD). The sensitivity of Alrao to [𝜂min; 𝜂max] decreases
markedly with network width. For instance, a wide interval [𝜂min; 𝜂max] = [10−12; 104] works
reasonably well with an 8-fold network, even though most units receive unsuitable learning
rates.

So, even if the choice of 𝜂min and 𝜂max is important, the results are much more stable to
varying these two hyperparameters than to the original learning rate, especially with large
networks.

4.7 Discussion, Limitations, and Perspectives

Alrao specifically exploits redundancy between units in deep learning models, relying on the
overall network approach of combining a large number of units built for diversity of behavior.
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Alrao would not make sense in a classical convex optimization setting. That Alrao works at all
is already informative about some phenomena at play in deep neural networks.

Alrao can make lengthy SGD learning rate sweeps unnecessary on large models, such as the
triple-width ResNet50 for ImageNet above. Incidentally, in our experiments, wider networks
provided increased performance both for SGD and Alrao (Table 4.1, Fig. 4.3 and Fig. 4.5):
network size is still a limiting factor for the models used, independently of the algorithm.

Increased number of parameters for the classification layer. Since Alrao modifies the
output layer of the optimized model, the number of parameters in the classification layer is
multiplied by the number of classifier copies. (The number of parameters in the internal layers
is unchanged.) This is a limitation for models with most parameters in the classifier layer.

On CIFAR10 (10 classes), the number of parameters increases by less than 5% for the models
used. On ImageNet (1000 classes), it increases by 50–100% depending on the architecture. On
Penn Treebank, the number of parameters increased by 26% in our setup (at character level);
working at word level it would have increased fivefold (Appendix 4.F).

This can be mitigated by handling the copies of the classifiers on distinct computing units:
in Alrao these copies work in parallel given the internal layers. Moreover, the additional output
layer copies may be thrown away early in training (Appendix 4.C). Finally, models with a large
number of output classes usually rely on other parameterizations than a direct softmax, such
as a hierarchical softmax (see references in (Jozefowicz et al., 2016)); Alrao can be used in
conjunction with such methods.

Multiple output layer copies and expressiveness. Using several copies of the output layer
in Alrao formally provides more expressiveness to the model, as it creates a larger architecture
with more parameters. We performed two control experiments to check that Alrao’s performance
does not just stem from this. First, we performed ablation of the output layer copies in Alrao
after one epoch, only keeping the copy with the highest model averaging weight 𝑎𝑖: the learning
curves are identical. Second, we trained default Adam using copies of the output layer (all
with the same Adam default learning rate): the learning curves are identical to Adam on the
unmodified architecture. The details are in Appendix 4.C. Thus, the copies of the output layer
do not bring any useful added expressiveness.

Learning rate schedules, other optimizers, other hyperparameters... Learning rate
schedules are often effective (Bengio, 2012). We did not use them here: this may partially
explain why the results in Table 4.1 are worse than the state-of-the-art. One might have hoped
that the diversity of learning rates in Alrao would effortlessly bring it to par with step size
schedules, but the results above do not support this. Still, nothing prevents using a scheduler
together with Alrao, e.g., by dividing all Alrao learning rates by a time-dependent constant.

The Alrao idea can also be used with other optimizers than SGD, such as Adam. We
tested combining Alrao and Adam, and found the combination less reliable than standard Alrao
(Appendix 4.E, Fig. 4.8): curves on the training set mostly look good, but the method quickly
overfits (Fig. 4.8).

The Alrao idea could be used on other hyperparameters as well, such as momentum. However,
with more hyperparameters initialized randomly for each unit, the fraction of units having
suitable values for all their hyperparameters simultaneously will quickly decrease.

4.8 Conclusion

Applying stochastic gradient descent with multiple learning rates for different units is surprisingly
resilient in our experiments, and provides performance close to SGD with an optimal learning
rate, as soon as the range of random learning rates is not excessive. Alrao could save time when
testing deep learning models, opening the door to more out-of-the-box uses of deep learning.





Appendix

4.A Model Averaging with the Switch
As explained is Section 4.4, we use a model averaging method on the classifiers of the output layer. We could
have used the Bayesian Model Averaging method (Wasserman, 2000). But one of its main weaknesses is the
catch-up phenomenon (Van Erven et al., 2012): plain Bayesian posteriors are slow to react when the relative
performance of models changes over time. Typically, for instance, some larger-dimensional models need more
training data to reach good performance: at the time they become better than lower-dimensional models for
predicting current data, their Bayesian posterior is so bad that they are not used right away (their posterior
needs to “catch up” on their bad initial performance). This leads to very conservative model averaging methods.

The solution from (Van Erven et al., 2012) against the catch-up phenomenon is to switch between models.
It is based on previous methods for prediction with expert advice (see for instance (Herbster and Warmuth,
1998; Volf and Willems, 1998) and the references in (Koolen and De Rooij, 2008; Van Erven et al., 2012)), and
is well rooted in information theory. The switch method maintains a Bayesian posterior distribution, not over
the set of models, but over the set of switching strategies between models. Intuitively, the model selected can be
adapted online to the number of samples seen.

We now give a quick overview of the switch method from (Van Erven et al., 2012): this is how the model
averaging weights 𝑎𝑗 are chosen in Alrao.

Assume that we have a set of prediction strategies ℳ = {𝑝𝑗 , 𝑗 ∈ ℐ}. We define the set of switch sequences,
S = {((𝑡1, 𝑗1), ..., (𝑡𝐿, 𝑗𝐿)), 1 = 𝑡1 < 𝑡2 < ... < 𝑡𝐿 , 𝑗 ∈ ℐ}. Let 𝑠 = ((𝑡1, 𝑗1), ..., (𝑡𝐿, 𝑗𝐿)) be a switch sequence.
The associated prediction strategy 𝑝𝑠(𝑦1:𝑛|𝑥1:𝑛) uses model 𝑝𝑗𝑖 on the time interval [𝑡𝑖; 𝑡𝑖+1), namely

𝑝𝑠(𝑦1:𝑖+1|𝑥1:𝑖+1, 𝑦1:𝑖) = 𝑝𝐾𝑖 (𝑦𝑖+1|𝑥1:𝑖+1, 𝑦1:𝑖) (4.A.1)

where 𝐾𝑖 is such that 𝐾𝑖 = 𝑗𝑙 for 𝑡𝑙 ⩽ 𝑖 < 𝑡𝑙+1. We fix a prior distribution 𝜋 over switching sequences. In this
work, ℐ = {1, ..., 𝑁𝐶} the prior is, for a switch sequence 𝑠 = ((𝑡1, 𝑗1), ..., (𝑡𝐿, 𝑗𝐿)):

𝜋(𝑠) = 𝜋𝐿(𝐿)𝜋𝐾(𝑗1)
𝐿∏︁
𝑖=2

𝜋𝑇 (𝑡𝑖|𝑡𝑖 > 𝑡𝑖−1)𝜋𝐾(𝑗𝑖) (4.A.2)

with 𝜋𝐿(𝐿) = 𝜃𝐿

1−𝜃 a geometric distribution over the switch sequences lengths, 𝜋𝐾(𝑗) = 1
𝑁𝐶

the uniform

distribution over the models (here the classifiers) and 𝜋𝑇 (𝑡) = 1
𝑡(𝑡+1)

.
This defines a Bayesian mixture distribution:

𝑝𝑠𝑤(𝑦1:𝑇 |𝑥1:𝑇 ) =
∑︁
𝑠∈S

𝜋(𝑠)𝑝𝑠(𝑦1:𝑇 |𝑥1:𝑇 ) (4.A.3)

Then, the model averaging weight 𝑎𝑗 for the classifier 𝑗 after seeing 𝑇 samples is the posterior of the switch
distribution: 𝜋(𝐾𝑇+1 = 𝑗|𝑦1:𝑇 , 𝑥1:𝑇 ).

𝑎𝑗 = 𝑝𝑠𝑤(𝐾𝑇+1 = 𝑗|𝑦1:𝑇 , 𝑥1:𝑇 )

=
𝑝𝑠𝑤(𝑦1:𝑇 ,𝐾𝑇+1 = 𝑗|𝑥1:𝑇 )

𝑝𝑠𝑤(𝑦1:𝑇 |𝑥1:𝑇 )

These weights can be computed online exactly in a quick and simple way (Van Erven et al., 2012), thanks to
dynamic programming methods from hidden Markov models.

The implementation of the switch used in Alrao exactly follows the pseudo-code from (Van Erven et al.,
2008), with hyperparameter 𝜃 = 0.999 (allowing for many switches a priori). It can be found in the accompanying
online code.

4.B Convergence result in a simple case
We prove a convergence result on Alrao in a simplified case: we assume that the loss is convex, that the
internal layers are fixed, that we work with full batch gradients rather than stochastic gradient descent, and that

75
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the Alrao model averaging method is standard Bayesian model averaging. The convexity and fixed classifier
assumptions cover, for instance, standard logistic regression: in that case the Alrao output layer contains copies
of a logistic classifier with various learning rates, and Alrao’s internal layers are the identity, (or any fixed linear
map).

For each Alrao classifier 𝑗, for simplicity we denote its parameters by 𝜃𝑗 instead of 𝜃cl𝑗 (there is no more
ambiguity since the internal layers are fixed).

The loss of some classifier 𝐶 on a dataset with features (𝑥𝑖) and labels (𝑦𝑖) is 𝐿(𝐶) := 1
𝑁

∑︀
𝑖 ℓ(𝐶(𝑥𝑖), 𝑦𝑖),

where for each input 𝑥𝑖, (𝐶(𝑥𝑖)𝑦)𝑦∈𝒴 is a probability distribution over the possible labels 𝑦 ∈ 𝒴, and we use the
log-loss ℓ(𝐶(𝑥𝑖), 𝑦𝑖) := − log𝐶(𝑥𝑖)𝑦𝑖 .

For a classifier 𝐶𝜃 with parameter 𝜃, let us abbreviate 𝐿(𝜃) := 𝐿(𝐶𝜃). We assume that 𝐿(𝜃) is a non-negative
convex function, with ∇2𝐿(𝜃) ⪯ 𝜆𝐼 for all 𝜃. Let 𝐿* be its global infimum; we assume 𝐿* is a minimum, reached
at some point 𝜃*, namely 𝐿(𝜃*) = 𝐿*. Moreover we assume that 𝐿 is locally strongly convex at its minimum 𝜃*:
∇2𝐿(𝜃*) ≻ 0.

The Alrao architecture for such a classifier 𝐶𝜃 uses 𝑁cl copies of the same classifier, with different parameter
values:

ΦAlrao
𝜃Alrao

(𝑥) =

𝑁cl∑︁
𝑗=1

𝑎𝑗𝐶𝜃𝑗 (4.B.1)

where 𝜃Alrao := (𝜃1, ..., 𝜃𝑁cl), and where the (𝑎𝑗)𝑗 are the weights given by the model averaging method. We
abbreviate 𝐿(𝜃Alrao) := 𝐿(ΦAlrao

𝜃Alrao
).

The Alrao classification layer uses a set of learning rates (𝜂𝑗)𝑗∈𝐽 , and starting points (𝜃
(0)
𝑗 )𝑗∈𝐽 . Using

full-batch (non stochastic) Alrao updates we have

𝜃
(𝑡+1)
𝑗 = 𝜃

(𝑡)
𝑗 − 𝜂𝑗∇𝐿(𝜃

(𝑡)
𝑗 )

𝑎(𝑡+1) = ModelAveraging(𝑎(𝑡), (𝐶𝜃𝑖 (𝑥1:𝑁 ))𝑖, 𝑦1:𝑁 )

We assume that the model averaging method is Bayesian Model Averaging.
We have assumed that the Hessian of the loss of the model satisfies ∇2𝐿(𝜃) ⪯ 𝜆𝐼. Under this condition,

the standard theory of gradient descent for convex functions requires that the learning rate be less than 1/𝜆,
otherwise the gradient descent might diverge. Therefore, for Alrao we assume that at least one of the learning
rates considered by Alrao is below this threshold.

Theorem 4.1. Assume that at least one of the Alrao learning rates 𝜂𝑗 satisfies 𝜂𝑗 < 1/𝜆, with 𝜆 as above.
Then, under the assumptions above, the Alrao loss is at most the optimal loss when 𝑡→∞:

lim sup
𝑡

𝐿(𝜃
(𝑡)
Alrao) ⩽ 𝐿* (4.B.2)

Proof. Let us analyze the dynamics of the different models in the model averaging method. Let us split the
set of Alrao classifiers in two categories according to whether their sum of errors is finite or infinite, namely,

𝐴 :=

⎧⎨⎩𝑗 ∈ 𝐽 such that
∑︁
𝑡⩾0

(︁
𝐿(𝜃

(𝑡)
𝑗 )− 𝐿*

)︁
<∞

⎫⎬⎭ ,

𝐵 :=

⎧⎨⎩𝑗 ∈ 𝐽 such that
∑︁
𝑡⩾0

(︁
𝐿(𝜃

(𝑡)
𝑗 )− 𝐿*

)︁
=∞

⎫⎬⎭
and in particular, for any 𝑗 ∈ 𝐴, lim𝑡 𝐿(𝜃

(𝑡)
𝑗 ) = 𝐿*.

The proof is organized as follows: We first show that 𝐴 is not empty. Then, we show that lim𝑡→∞ 𝑎
(𝑡)
𝑗 = 0

for all 𝑗 ∈ 𝐵: these models are eliminated by the model averaging method. Then we will be able to conclude.

First, we show that 𝐴 is not empty: namely, that there is least one 𝑗 such that
∑︀
𝑡⩾0(𝐿(𝜃

(𝑡)
𝑗 )− 𝐿*) <∞.

We know that there is 𝑗 such that 𝜂𝑗 < 2
𝜆

. Hence, the standard theory of gradient descent for convex functions
shows that this particular classifier converges (e.g., (Tibshirani and Marchetti-Bowick, 2013)), namely, the
loss (𝐿(𝜃

(𝑡)
𝑗 ))𝑡 converges to 𝐿*. Moreover, since 𝐿 is locally strictly convex around 𝜃*, this implies that

lim𝑡 𝜃
(𝑡)
𝑗 = 𝜃*.

We now show that the sum of errors for this specific 𝑗 converges. We assumed that 𝐿(𝜃) is locally strongly
convex in 𝜃*. Let 𝜇 > 0 such that ∇2𝐿(𝜃*) ⪰ 𝜇𝐼. Since 𝐿 is 𝐶2, there is 𝜀′ such that for any 𝜃 such that
‖𝜃 − 𝜃*‖ ⩽ 𝜀′, then ∇2𝐿(𝜃) ⪰ 𝜇

2
𝐼. Let 𝜏 ∈ N such that ‖𝜃(𝜏)𝑗 − 𝜃*‖ < 𝜀′. Then, from the theory of gradient

descent for strongly convex functions (Tibshirani and Marchetti-Bowick, 2013), we know there is some 𝛾 < 1
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such that for 𝑡 > 𝜏 , 𝐿(𝜃(𝑡)𝑗 )− 𝐿* ⩽ 𝐶‖𝜃(𝜏)𝑗 − 𝜃*‖𝛾𝑡. We have:

𝑡∑︁
𝑠=1

(︁
𝐿(𝜃

(𝑠)
𝑗 )− 𝐿*

)︁
=

=

𝜏∑︁
𝑠=1

(︁
𝐿(𝜃

(𝑠)
𝑗 )− 𝐿*

)︁
+

𝑡∑︁
𝑠=𝜏

(︁
𝐿(𝜃

(𝑠)
𝑗 )− 𝐿*

)︁
⩽

𝜏∑︁
𝑠=1

(︁
𝐿(𝜃

(𝑠)
𝑗 )− 𝐿*

)︁
+ 𝐶‖𝜃(𝜏)𝑗 − 𝜃*‖𝛾𝜏

1

1− 𝛾

Thus
∑︀
𝑡⩾0

(︁
𝐿(𝜃

(𝑡)
𝑗 )− 𝐿*

)︁
<∞. Therefore, 𝐴 is not empty.

We now show that the weights 𝑎(𝑡)𝑗 tend to 0 for any 𝑗 ∈ 𝐵, namely, lim𝑡→∞ 𝑎
(𝑡)
𝑗 = 0. Let 𝑗 ∈ 𝐵 and

take some 𝑖 ∈ 𝐴. In Bayesian model averaging, the weights are

𝑎
(𝑡)
𝑗 =

∏︀𝑡
𝑠=1 𝑝𝜃(𝑠)𝑗

(𝑦1:𝑁 |𝑥1:𝑁 )∑︀
𝑘

∏︀𝑡
𝑠=1 𝑝𝜃(𝑠)

𝑘

(𝑦1:𝑁 |𝑥1:𝑁 )

⩽
𝑡∏︁

𝑠=1

𝑝
𝜃
(𝑠)
𝑗

(𝑦1:𝑁 |𝑥1:𝑁 )

𝑝
𝜃
(𝑠)
𝑖

(𝑦1:𝑁 |𝑥1:𝑁 )

=
𝑡∏︁

𝑠=1

exp(−𝑁𝐿(𝜃(𝑠)𝑗 ))

exp(−𝑁𝐿(𝜃(𝑠)𝑖 ))

= exp
(︁
−𝑁

𝑡∑︁
𝑠=1

(︁
𝐿(𝜃

(𝑠)
𝑗 )− 𝐿*

)︁
+

𝑁
𝑡∑︁

𝑠=1

(︁
𝐿(𝜃

(𝑠)
𝑖 )− 𝐿*

)︁)︁
Since 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐵, by definition of 𝐴 and 𝐵 this tends to 0. Therefore, lim𝑡 𝑎

(𝑡)
𝑗 = 0 for all 𝑗 ∈ 𝐵.

We now prove the statement of the theorem. We have:

𝐿(𝜃
(𝑡)
Alrao) =

1

𝑁

∑︁
𝑖

− log
(︁∑︁
𝑗∈𝐴

𝑎𝑗𝑒
−ℓ(𝐶

𝜃
(𝑡)
𝑗

(𝑥𝑖),𝑦𝑖)

+

∑︁
𝑗∈𝐵

𝑎𝑗𝑒
−ℓ(𝐶
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thanks to Jensen’s inequality for − log, then because lim𝑡 𝑎
(𝑡)
𝑗 = 0 for 𝑗 ∈ 𝐵, and finally because lim𝑡 𝐿(𝜃
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𝐿* for 𝑗 ∈ 𝐴. Taking the lim sup, we have:
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(𝑡)
Alrao) ⩽ 𝐿* (4.B.3)

which ends the proof.

4.C Influence of Model Averaging in Alrao

We investigated the importance of the model averaging method in Alrao.

Evolution of the model averaging weights. In Figure 4.6a, we represent the evolution of the
model averaging weights 𝑎𝑗 during training of GoogLeNet with Alrao on CIFAR10. We can make several
observations. First, after only a few gradient descent steps, the model averaging weights corresponding to the
three classifiers with the largest learning rates go to practically zero. This means that their parameters are
moving too fast, and their loss is getting very large. Next, for a short time, a classifier with a moderately large
learning rate gets the largest posterior weight, presumably because it is the first to learn a useful model. Finally,
after the model has seen approximately 4,000 samples, a classifier with a slightly smaller learning rate is assigned
a posterior weight 𝑎𝑗 close to 1, while all the others go to 0. Thus, after a number of gradient steps, the model
averaging method acts like a model selection method.

Model selection instead of model averaging. This evolution of the model averaging weights
suggests that the averaging in the last layer is acting as a model selection procedure. Once the weight 𝑎𝑗 of some
classifier 𝑗 is close to 1, the output of the full Alrao architecture with model averaging is close to the output of
the original architecture with a single classifier with weights 𝜃out𝑗 from this classifier. We compared Alrao with a
modified version of Alrao in which after 1 epoch, the classifier with largest model averaging weight is selected,
and the other classifiers are dropped (Fig. 4.6b). The behaviors of these two variants are exactly the same.

Adam with the Alrao output layer. In order to control the effect of the increased expressiveness
induced by the expanded output layer in the Alrao architecture, we ran Adam (with its default parameters) on
GoogLeNet modified as in Alrao (namely, with model averaging over 10 classifiers) (Fig. 4.6c). The learning
behavior is exactly the same as Adam on the original architecture. Thus, changing the architecture by replacing
the single classifier layer with an average of classifiers does not by itself improve training performance.

4.D Additional Experimental Details and Results

In the case of CIFAR-10 and ImageNet, we normalize each input channel 𝑥𝑖 (1 ⩽ 𝑖 ⩽ 3), using its mean and its
standard deviation over the training set. Let 𝜇𝑖 and 𝜎𝑖 be respectively the mean and the standard deviation of
the 𝑖-th channel. Then each input (𝑥1, 𝑥2, 𝑥3) is transformed into (𝑥1−𝜇1

𝜎1
, 𝑥2−𝜇2

𝜎2
, 𝑥3−𝜇3

𝜎3
). This operation is

done over all the data (training, validation and test).
Moreover, we use data augmentation: every time an image of the training set is sent as input of the NN,

this image is randomly cropped and randomly flipped horizontally. Cropping consists in filling with black a
band at the top, bottom, left and right of the image. The size of this band is randomly chosen between 0 and 4
in our experiments.

The batch size is: 32 on CIFAR10 for every architecture, 20 on PTB, and 256 on ImageNet for Alexnet and
ResNet50, and 128 for Densenet121.

On Reinforcement Learning environments, we use vanilla Q-learning (Mnih et al., 2015) with a soft target
update as in (Lillicrap et al., 2015) 𝜏 = 0.9, and a memory buffer of size 1,000,000. The architecture for the Q
network is a MLP with 2 hidden layers. The learning curves are in Fig. 4.7d. For the optimization, the switch is
used with 10 output layers. An output layer is a linear layer. Since the switch is a probability model averaging
method, we consider each output layer as a probabilistic model, defined as a Normal distribution with variance
1 and mean the predicted value by the output layer. The loss for the Alrao model is the negative log-likelihood
of the model mixture.

4.E Alrao with Adam

In Figure 4.8, we report our experiments with Alrao-Adam on CIFAR10. As explained in Section 4.7, Alrao is
much less reliable with Adam than with SGD.

This is especially true for the test performance, which can even diverge while training performance remains
either good or acceptable (Fig. 4.8). Thus Alrao-Adam seems to send the model into atypical regions of the
search space.
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We have no definitive explanation for this at present. It might be that changing Adam’s learning rate
requires changing its momentum parameters accordingly. It might be that Alrao does not work on Adam because
Adam is more sensitive to its hyperparameters.

4.F Number of Parameters
As explained in Section 4.7, Alrao increases the number of parameters of a model, due to output layer copies.
The additional number of parameters is approximately equal to (𝑁out − 1)×𝐾 × 𝑑 where 𝑁out is the number
of classifier copies used in Alrao, 𝑑 is the dimension of the input to the output layer, and 𝐾 is the number of
classes in the classification task (assuming a standard softmax output; classification with many classes often
uses other kinds of output parameterization instead).

Table 4.2: Comparison between the number of parameters in models used without and with
Alrao. LSTM (C) is a simple LSTM cell used for character prediction while LSTM (W) is the
same cell used for word prediction.

Model Number of parameters
Without Alrao With Alrao

GoogLeNet 6.166M 6.258M
VGG 20.041M 20.087M
MobileNet 2.297M 2.412M

LSTM (C) 0.172M 0.217M
LSTM (W) 2.171M 11.261M

The number of parameters for the models used, with and without Alrao, are in Table 4.2. Using Alrao for
classification tasks with many classes, such as word prediction (10,000 classes on PTB), increases the number of
parameters noticeably.

For those model with significant parameter increase, the various classifier copies may be done on parallel
GPUs.

4.G Frozen Features Do Not Hurt Training
As explained in the introduction, several works support the idea that not all units are useful when learning a
deep learning model. Additional results supporting this hypothesis are presented in Figure 4.4. We trained a
GoogLeNet architecture on CIFAR10 with standard SGD with learning rate 𝜂0, but learned only a random
fraction 𝑝 of the features (chosen at startup), and kept the others at their initial value. This is equivalent to
sampling each learning rate 𝜂 from the probability distribution 𝑃 (𝜂 = 𝜂0) = 𝑝 and 𝑃 (𝜂 = 0) = 1− 𝑝.

We observe that even with a fraction of the weights not being learned, the model’s performance is close to
its performance when fully trained.

When training a model with Alrao, many features might not learn at all, due to too small learning rates.
But Alrao is still able to reach good results. This could be explained by the resilience of neural networks to
partial training.
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Figure 4.4: Loss of a model where only a random fraction 𝑝 of the features are trained, and the
others left at their initial value, as a function of 𝑝. The architecture is GoogLeNet, trained on
CIFAR10.
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Figure 4.5: Effect of width with SGD on GoogLeNet trained on CIFAR10, after 15 epochs
(average over three runs). Grey means numerical divergence (NaN).
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(a) Model averaging weights during training of GoogLeNet with Alrao on CIFAR10 with 10 classifiers.
We represent the weights 𝑎𝑗 , depending on the corresponding classifier’s learning rate.
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(b) Training with standard Alrao and with Alrao with model selection. With model selection, after one
epoch the best classifier is selected according to the model averaging weights, so that the architecture
reverts to the original architecture without model averaging. The results are averaged on three runs.
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(c) Training with Adam on GoogLeNet, and on the same architecture modified as in Alrao (with 10
output layer copies). Every classifier copy uses the same default Adam learning rate. The overall output
of the model is, as in Alrao, a switch model averaging over the classifier. The results are averaged on
three runs.

Figure 4.6: Experiments on the effect of the model averaging layer in Alrao. In all experiments,
GoogLeNet is trained on CIFAR10.
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(a) GoogLeNet on CIFAR10 (Average on three runs)
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(b) Densenet121 trained on ImageNet
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(c) MobileNetV2 on Cifar10 (average over 3 runs)
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(a) Alrao-Adam with GoogLeNet on CIFAR10: Alrao-Adam compared with standard Adam with
various learning rates. Alrao uses 10 classifiers and learning rates in the interval (10−6; 1). Each plot is
averaged on 10 experiments. We observe that optimization with Alrao-Adam is efficient, since train
loss is comparable to the usual Adam methods. But the model starkly overfits, as the test loss diverges.
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(b) Alrao-Adam with MobileNet on CIFAR10: Alrao-Adam with two different learning rate intervals,
(10−6; 10−2) for the first one, (10−6; 10−1) for the second one, with 10 classifiers each. The first one
is with 𝜂min = 10−6. Each plot is averaged on 10 experiments. Exactly as with GoogLeNet model,
optimization itself is efficient (for both intervals). For the interval with the smallest 𝜂max, the test loss
does not converge and is very unstable. For the interval with the largest 𝜂max, the test loss diverges.

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(c) Alrao-Adam with VGG19 on CIFAR10: Alrao-Adam on the interval (10−6, 1), with 10 classifiers.
The 10 plots are 10 runs of the same experiments. While 9 of them do converge and generalize, the last
one exhibits wide oscillations, both in train and test.

Figure 4.8: Alrao-Adam: Experiments with the VGG19, GoogLeNet and MobileNet networks
on CIFAR10.





Chapter 5

Making Deep Q-learning methods
robust to time discretization

In this chapter, we present the published paper:

Tallec, C., Blier, L., and Ollivier, Y. (2019). Making Deep Q-learning methods
robust to time discretization. In ICML 2019 - Thirty-sixth International Conference
on Machine Learning

5.1 Introduction

In recent years, Deep Reinforcement Learning (DRL) approaches have provided impressive
results in a variety of domains, achieving superhuman performance with no expert knowledge
in perfect information zero-sum games (Silver et al., 2017), reaching top player level in video
games (OpenAI 2018b, Mnih et al. 2015), or learning dexterous manipulation from scratch
without demonstrations (OpenAI, 2018a). In spite of those successes, DRL approaches are
sensitive to a number of factors, including hyperparameterization, implementation details or
small changes in the environment parameters (Henderson et al. 2017, Zhang et al. 2018). This
sensitivity, along with sample inefficiency, largely prevents DRL from being applied in real
world settings. Notably, high sensitivity to environment parameters prevents transfer from
imperfect simulators to real world scenarios.

In this paper we focus on the sensitivity to time discretization of DRL approaches, such as
what happens when an agent receives 50 observations and is expected to take 50 actions per
second instead of 10. In principle, decreasing time discretization, or equivalently shortening
reaction time, should only improve agent performance. Robustness to time discretization is
especially relevant in near-continuous environments, which includes most continuous control
environments, robotics, and many video games.

Standard approaches based on estimation of state-action value functions, such as Deep
𝑄-learning (DQN, Mnih et al. 2015) and Deep deterministic policy gradient (DDPG, Lillicrap
et al. 2015) are not at all robust to changes in time discretization. This is shown experimentally
in Sec. 5.5. Intuitively, as the discretization timestep decreases, the effect of individual actions
on the total return decreases too: 𝑄*(𝑠, 𝑎) is the value of playing action 𝑎 then playing
optimally, and if 𝑎 is only maintained for a very short time its advantage over other actions
will be accordingly small. (This occurs even with a suitably adjusted decay factor 𝛾.) If the
discretization timestep becomes infinitesimal, the effect of every individual action vanishes: there
is no continuous-time 𝑄-function (Thm. 5.2), hence the poor performance of 𝑄-learning with
small time steps. These statements can be fully formalized in the framework of continuous-time
reinforcement learning (Sec. 5.3) (Doya, 2000; Baird, 1994).

We focus on continuous time because this leads to a clear theoretical framework, but our
observations make sense in any setting in which the value results from taking a large number
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of small individual actions. Our results suggest standard 𝑄-learning will fail in such settings
without a delicate balance of hyperparameter scalings and reparameterizations.

We are looking for an algorithm that would be as invariant as possible to changing the
discretization timestep. Such an algorithm should remain viable when this timestep is small, and
in particular admit a continuous-time limit when the discretization timestep goes to 0. This leads
to precise design choices in term of agent architecture, exploration policy, and learning rates
scalings. The resulting algorithm is shown to provide better invariance to time discretization
than vanilla DQN or DDPG, on many environments (Sec. 5.5). On a new environment, as soon
as the order of magnitude of the time discretization is known, our analysis readily provides
relevant scalings for a number of hyperparameters.

Our contribution is threefold:

• Building on (Baird, 1994), we formally show that the 𝑄-function collapses to the 𝑉 -
function in near-continuous time, and thus that standard 𝑄-learning is ill-behaved in this
setting.

• Our analysis of properties in the continuous-time limit leads to a robust off-policy
algorithm. In particular, it provides insights on architecture design, and constrains
exploration schemes and learning rates scalings.

• We empirically show that standard 𝑄-learning methods are not robust to changes in
time discretization, exhibiting degraded performance, while our algorithm demonstrates
substantial robustness.

5.2 Related Work

Our approach builds on (Baird, 1994), who identified the collapse of 𝑄-learning for small time
steps and, as a solution, suggested the Advantage Updating algorithm, with proper scalings for
the 𝑉 and advantage parts depending on timescale 𝛿𝑡; testing was only done on a quadratic-linear
problem.

We expand on (Baird, 1994) in several directions. First, we modify the algorithm by using
a different normalization step for 𝐴, which forgoes the need to learn the normalization itself,
thanks to the parameterization (5.4.8). Second, we test Advantage Updating for the first time
on a variety on RL environments using deep networks, establishing Deep Advantage Updating
as a viable algorithm in this setting. Third, we provide formal proofs in a general setting
for the collapse of 𝑄-learning when the timescale 𝛿𝑡 tends to 0, and for the non-collapse of
Advantage Updating with the proper scalings. Fourth, we also discuss how to obtain 𝛿𝑡-invariant
exploration. Fifth, we provide stringent experimental tests of the actual robustness to changing
𝛿𝑡.

Our study focuses on off-policy algorithms. Some on-policy algorithms, such as A3C (Mnih
et al., 2016), PPO (Schulman et al., 2017) or TRPO (Schulman et al., 2015) may be time
discretization invariant with specific setups. This is out of the scope of our work and would
require a separate study.

(Wang et al., 2015) also use a parameterization separating the value and advantage com-
ponents of the 𝑄-function. But contrary to (Baird, 1994)’s Advantage Updating, learning is
still done in a standard way on the 𝑄-function obtained from adding these two components.
Thus this approach reparameterizes 𝑄 but does not change scalings and does not result in an
invariant algorithm for small 𝛿𝑡.

The problem studied here is a continuity effect quite distinct from multiscale RL approaches:
indeed the issue arises even if there is only one timescale in the environment. Arguably, a
small 𝛿𝑡 can be seen as a mismatch between the algorithm’s timescale and the physical system’s
timescale, but the collapse of the 𝑄 function to the 𝑉 function is an intrinsic mathematical
phenomenon arising from time continuity.

Reinforcement learning has been studied from a mathematical perspective when time and
space are both continuous, in connection with optimal control and the Hamilton–Jacobi–Bellman
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(HJB) equation (a PDE which characterizes the value function for continuous space-time).
Explicit algorithms for continuous space-time can be found in (Doya, 2000; Munos and Bourgine,
1998) (see also the references therein). (Munos and Bourgine, 1998) use a grid approach to
provably solve the HJB equation when discretization tends to 0 (assuming every state in the
grid is visited a large number of times). However, the resulting algorithms are impractical
(Doya, 2000) for larger-dimensional problems. (Doya, 2000) focusses on algorithms specific to
the continuous space-time case, including advantage updating and modelling the time derivative
of the environment.

Here on the other hand we focus on generic deep RL algorithms that can handle both
discrete and continuous time and space, without collapsing in continuous time, thus being
robust to arbitrary timesteps.

5.3 Near Continuous-Time Reinforcement Learning

Many reinforcement learning environments are not intrinsically time-discrete, but discretiza-
tions of an underlying continuous-time environment. For instance, many simulated control
environments, such as the Mujoco environments (Lillicrap et al., 2015) or OpenAI Gym classic
control environments (Brockman et al., 2016), are discretizations of continuous-time control
problems. In simulated environments, the time discretization is fixed by the simulator, and is
often used to approximate an underlying differential equation. In this case, the timestep may
correspond to the number of frames generated by second. In real world environments, sensors
and actuators have a fixed time precision: cameras can only capture a fixed amount of frames
per second, and physical limitations prevent actuators from responding instantaneously. The
quality of these components thus imposes a lower bound on the discretization timestep. As
the timestep 𝛿𝑡 is largely a constraint imposed by computational ressources, we would expect
that decreasing 𝛿𝑡 would only improve the performance of RL agents (though it might make
optimization harder). RL algorithms should, at least, be resilient to a change of 𝛿𝑡, and should
remain viable when 𝛿𝑡→ 0. Besides, designing a time discretization invariant algorithm could
alleviate tedious hyperparameterization by providing better defaults for time-horizon-related
parameters.

We are thus interested in the behavior of RL algorithms in discretized environments, when
the discretization timestep is small. We will refer to such environments as near-continuous
environments. A formalized view of near-continuous environments is given below, along with
𝛿𝑡-dependent definitions of return, discount factor and value functions, that converge to well
defined continous-time limits. The state-action value function is shown to collapse to the value
function as 𝛿𝑡 goes to 0. Consequently there is no 𝑄-learning in continuous time, foreshadowing
problematic behavior of 𝑄-learning with small timesteps.

5.3.1 Framework

Let 𝒮 = R𝑑 be a set of states, and 𝒜 be a set of actions. Consider the continuous-time Markov
Decision Process (MDP) defined by the differential equation

𝑑𝑠𝑡/𝑑𝑡 = 𝐹 (𝑠𝑡, 𝑎𝑡) (5.3.1)

where 𝐹 : 𝒮 ×𝒜 → 𝒮 describes the dynamics of the environment. The agent interacts with the
environment through a deterministic policy function 𝜋 : 𝒮 → 𝒜, so that 𝑎𝑡 = 𝜋(𝑠𝑡). Actions
can be discrete or continuous. For simplicity we assume here that both the dynamics and
exploitation policy are deterministic; 1 the exploration policy will be random, but care must

1We believe the results presented here hold more generally, assuming states follow a stochastic differential
equation

𝑑𝑠 = 𝐹 (𝑠, 𝑎)𝑑𝑡+Σ(𝑠, 𝑎)𝑑𝐵𝑡 (5.3.2)

with 𝐵𝑡 a multidimensional Brownian motion and Σ a covariance matrix. A formal treatment of SDEs is beyond
the scope of this paper.
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be taken to define proper random policies in continuous time, especially with discrete actions
(Sec. 5.4.2).

For any timestep 𝛿𝑡 > 0, we can define an MDPℳ𝛿𝑡 = ⟨𝒮,𝒜, 𝑇𝛿𝑡, 𝑟𝛿𝑡, 𝛾𝛿𝑡⟩ as a discretization
of the continuous-time MDP with time discretization 𝛿𝑡. The transition function of a state 𝑠
is the state obtained when starting at 𝑠0 = 𝑠 and maintaining 𝑎𝑡 = 𝑎 constant for a time 𝛿𝑡.
This corresponds to an agent evolving in the continuous environment (5.3.1), but only making
observations and choosing actions every 𝛿𝑡. The rewards and decay factor are specified below.
We call such an MDP ℳ𝛿𝑡 near-continuous.

A necessary condition for robustness of an algorithm for near-continuous time MDPs is
to remain viable when 𝛿𝑡→ 0. Thus we will try to make sure the various quantities involved
converge to meaningful limits when 𝛿𝑡→ 0.

We give semi-formal statements below; the full statements, proofs, and technical assumptions
(typically, differentiability assumptions) can be found in the supplementary material.

Return and discount factor. Suitable 𝛿𝑡-dependent scalings of the discount factor 𝛾𝛿𝑡 and
reward 𝑟𝛿𝑡 are as follows. These definitions fit the discrete case when 𝛿𝑡 = 1, and provide
well-defined, non-trivial returns and value functions when 𝛿𝑡 goes to 0.

For a continuous MDP and a continuous trajectory 𝜏 = (𝑠𝑡, 𝑎𝑡)𝑡, the return is defined
as (Doya, 2000)

𝑅(𝜏) :=

∫︁ ∞

𝑡=0

𝛾𝑡 𝑟(𝑠𝑡, 𝑎𝑡) 𝑑𝑡. (5.3.3)

A natural time discretization is obtained by defining the discretized return 𝑅𝛿𝑡 of the MDP
ℳ𝛿𝑡 as

𝑅𝛿𝑡(𝜏) :=

∞∑︁
𝑘=0

𝛾𝑘𝛿𝑡 𝑟(𝑠𝑘𝛿𝑡, 𝑎𝑘𝛿𝑡) 𝛿𝑡 (5.3.4)

and the discretized return will correspond to the continuous-time return if we set the decay
factor 𝛾𝛿𝑡 and rewards 𝑟𝛿𝑡 of the discretized MDP ℳ𝛿𝑡 to

𝛾𝛿𝑡 := 𝛾𝛿𝑡, 𝑟𝛿𝑡 := 𝛿𝑡.𝑟. (5.3.5)

Physical time vs algorithmic time, time horizon. In near-continuous environments,
there are two notions of time: the algorithmic time 𝑘 (number of steps or actions taken), and
the physical time 𝑡 (time spent in the underlying continuous time environment), related via
𝑡 = 𝑘.𝛿𝑡.

The time horizon is, informally, the time range over which the agent optimizes its return.
As a rule of thumb, the time horizon of an agent with discount factor 𝛾 is of order 1

1−𝛾 steps;
beyond that, the decay factor kicks in and the influence of further rewards becomes small.

The definition (5.3.5) of the decay factor 𝛾𝛿𝑡 in near-continuous environments keeps the
time horizon constant in physical time, by making 𝛾𝛿𝑡 close to 1 in algorithmic time. Indeed,
physical time horizon is 𝛿𝑡 times the algorithmic time horizon, namely

𝛿𝑡

1− 𝛾𝛿𝑡
= − 1

log 𝛾
+𝑂(𝛿𝑡) ≈ 1

1− 𝛾
, (5.3.6)

which is thus stable when 𝛿𝑡→ 0. On the other hand, if 𝛾𝛿𝑡 was left constant as 𝛿𝑡 goes to 0,
the corresponding time horizon in physical time would be ≈ 𝛿𝑡

1−𝛾 which goes to 0 when 𝛿𝑡 goes
to 0: such an agent would be increasingly short-sighted as 𝛿𝑡→ 0.

In the following, we use the suitably-scaled decay factor (5.3.5) both for Deep Advantage
Updating and for the classical deep 𝑄-learning baselines.
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Value function. The return (5.3.3) leads to the following continuous-time value function

𝑉 𝜋(𝑠) = E𝜏∼𝜋 [𝑅(𝜏) | 𝑠0 = 𝑠] (5.3.7)

= E𝜏∼𝜋

⎡⎣ ∞∫︁
0

𝛾𝑡 𝑟(𝑠𝑡, 𝑎𝑡) 𝑑𝑡 | 𝑠0 = 𝑠

⎤⎦ . (5.3.8)

Meanwhile, the value function (in the ordinary sense) of the discrete MDP ℳ𝛿𝑡 is

𝑉 𝜋𝛿𝑡 (𝑠) = E𝜏∼𝜋 [𝑅𝛿𝑡(𝜏) | 𝑠0 = 𝑠] (5.3.9)

= E𝜏∼𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝛿𝑡 𝑟(𝑠𝑘𝛿𝑡, 𝑎𝑘𝛿𝑡) 𝛿𝑡 | 𝑠0 = 𝑠

]︃
(5.3.10)

which obeys the Bellman equation 2

𝑉 𝜋𝛿𝑡 (𝑠) = 𝑟(𝑠, 𝜋(𝑠)) 𝛿𝑡+ 𝛾𝛿𝑡 E𝑠(𝑘+1)𝛿𝑡|𝑠𝑘𝛿𝑡=𝑠𝑉
𝜋
𝛿𝑡 (𝑠(𝑘+1)𝛿𝑡) (5.3.11)

When the timestep tends to 0, one converges to the other.

Theorem 5.1. Under suitable smoothness assumptions, 𝑉 𝜋𝛿𝑡 (𝑠) converges to 𝑉 𝜋(𝑠) when 𝛿𝑡→ 0.

5.3.2 There is No 𝑄-Function in Continuous Time
Contrary to the value function, the action-value function 𝑄 is ill-defined for continuous-time
MDPs. More precisely, the 𝑄-function collapses to the 𝑉 -function when 𝛿𝑡 → 0. In near
continuous time, the effect of individual actions on the 𝑄-function is of order 𝑂(𝛿𝑡). This will
make ranking of actions difficult, especially with an approximate 𝑄-function. This argument
appears informally in (Baird, 1994). Formally:

Theorem 5.2. Under suitable smoothness assumptions, The action-value function of a near-
continuous MDP is related to its value function via

𝑄𝜋𝛿𝑡(𝑠, 𝑎) = 𝑉 𝜋𝛿𝑡 (𝑠) +𝑂 (𝛿𝑡) (5.3.12)

when 𝛿𝑡→ 0, for every (𝑠, 𝑎).

As a consequence, in exact continuous time, 𝑄𝜋 is equal to 𝑉 𝜋: it does not bear any
information on the ranking of actions, and thus cannot be used to select actions with higher
returns. There is no continuous-time 𝑄-learning.

Proof. The discrete-time 𝑄-function of the MDP ℳ𝛿𝑡 satisfies the Bellman equation

𝑄𝜋𝛿𝑡(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) 𝛿𝑡+ 𝛾𝛿𝑡E𝑠′|𝑠,𝑎
[︀
𝑉 𝜋𝛿𝑡 (𝑠

′)
]︀
. (5.3.13)

The dynamics (5.3.1) of the environment yields

𝑠′ = 𝑠+ 𝐹 (𝑠, 𝑎) 𝛿𝑡+ 𝑜(𝛿𝑡). (5.3.14)

Assuming that 𝑉 𝜋𝛿𝑡 is continuously differentiable with respect to the state, and that its derivatives are uniformly
bounded, we obtain,

𝑉 𝜋𝛿𝑡 (𝑠
′) = 𝑉 𝜋𝛿𝑡 (𝑠) +∇𝑠𝑉

𝜋
𝛿𝑡 (𝑠) · 𝐹 (𝑠, 𝑎) 𝛿𝑡+ 𝑜(𝛿𝑡) (5.3.15)

= 𝑉 𝜋𝛿𝑡 (𝑠) +𝑂(𝛿𝑡) (5.3.16)

Expanding 𝑉 𝜋𝛿𝑡 (𝑠
′) into 𝑄𝜋𝛿𝑡 yields

𝑄𝜋𝛿𝑡(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) 𝛿𝑡+ 𝛾𝛿𝑡(𝑉 𝜋𝛿𝑡 (𝑠) +𝑂(𝛿𝑡)) (5.3.17)
= 𝑂(𝛿𝑡) + (1 +𝑂(𝛿𝑡))(𝑉 𝜋𝛿𝑡 (𝑠) +𝑂(𝛿𝑡)) (5.3.18)
= 𝑉 𝜋𝛿𝑡 (𝑠) +𝑂(𝛿𝑡). (5.3.19)

which ends the proof.

2If the continuous MDP follows the dynamics (5.3.1), the limit of the Bellman equation (5.3.11) for 𝑉 𝜋𝛿𝑡 when
𝛿𝑡→ 0 is the Hamilton–Jacobi–Bellman equation on 𝑉 𝜋 (Doya, 2000), namely, 𝑟 +∇𝑠𝑉 𝜋 · 𝐹 = − log(𝛾)𝑉 𝜋 .
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5.4 Reinforcement Learning with a Continuous-Time Limit

We now define a discrete algorithm with a well-defined continuous-time limit. It relies on three
elements: defining and learning a quantity that still contains information on action rankings
in the limit, using exploration methods with a meaningful limit, and scaling learning rates to
induce well-behaved parameter trajectories when 𝛿𝑡 goes to 0.

5.4.1 Advantage Updating

As seen above, there is no continuous time limit to 𝑄-learning, because 𝑄𝜋 becomes independent
of actions and thus cannot be used to select actions. With small but nonzero 𝛿𝑡, 𝑄𝜋𝛿𝑡 still
depends on actions, and could still be used to choose actions. However, when approximating
𝑄𝜋𝛿𝑡, if the approximation error is much larger than 𝑂(𝛿𝑡), this error dominates, the ranking of
actions given by the approximated 𝑄𝜋𝛿𝑡 is likely to be erroneous.

To define an object which contains the same information on actions as 𝑄𝜋𝛿𝑡, but admits a
learnable action-dependent limit, it is natural to define (Baird, 1994)

𝐴𝜋𝛿𝑡(𝑠, 𝑎) :=
𝑄𝜋𝛿𝑡(𝑠, 𝑎)− 𝑉 𝜋𝛿𝑡 (𝑠)

𝛿𝑡
, (5.4.1)

a rescaled version of the advantage function, as the difference between between 𝑄𝜋𝛿𝑡(𝑠, 𝑎) and
𝑉 𝜋𝛿𝑡 (𝑠) is of order 𝑂(𝛿𝑡). This amounts to splitting 𝑄 into value and advantage, and observing
that these scale very differently when 𝛿𝑡→ 0.

Contrary to the 𝑄-function, this rescaled advantage function converges when 𝛿𝑡→ 0 to a
non-degenerate action-dependent quantity.

Theorem 5.3. Under suitable smoothness assumptions, 𝐴𝜋𝛿𝑡(𝑠, 𝑎) has a limit 𝐴𝜋(𝑠, 𝑎) when
𝛿𝑡→ 0. The limit keeps information about actions: namely, if a policy 𝜋′ strictly dominates 𝜋,
then 𝐴𝜋(𝑠, 𝜋′(𝑠)) > 0 for some state 𝑠.

Learning 𝐴𝜋. The discretized 𝑄-function rewrites as

𝑄𝜋𝛿𝑡(𝑠, 𝑎) = 𝑉 𝜋𝛿𝑡 (𝑠) + 𝛿𝑡𝐴𝜋𝛿𝑡(𝑠, 𝑎). (5.4.2)

A natural way to approximate 𝑉 𝜋𝛿𝑡 and 𝐴𝜋𝛿𝑡 is to apply Sarsa or 𝑄-learning to a reparameterized
𝑄-function approximator

𝑄Θ(𝑠, 𝑎) := 𝑉𝜃(𝑠) + 𝛿𝑡𝐴𝜓(𝑠, 𝑎). (5.4.3)

with Θ := (𝜃, 𝜓). At initialization, if both 𝑉𝜃 and 𝐴𝜓 are initialized independently of 𝛿𝑡, this
parameterization provides reasonable scaling of the contribution of actions versus states in 𝑄.
Our goal is for 𝑉𝜃 to approximate 𝑉 𝜋𝛿𝑡 and for 𝐴𝜓 to approximate 𝐴𝜋𝛿𝑡.

Still, this reparameterization does not, on its own, guarantee that 𝐴 correctly approximates
𝐴𝜋𝛿𝑡 if𝑄Θ approximates𝑄𝜋𝛿𝑡. Indeed, for any given pair (𝑉𝜃, 𝐴𝜓), the pair (𝑉𝜃(𝑠)−𝑓(𝑠), 𝐴𝜓(𝑠, 𝑎)+
𝑓(𝑠)/𝛿𝑡) (for an arbitrary 𝑓) yields the exact same function 𝑄Θ. This new 𝐴𝜓 still defines the
same ranking of actions, yet this phenomenon might cause numerical problems or instability of
𝐴𝜓 when 𝛿𝑡→ 0, and prevents direct interpretation of the learned 𝐴𝜓. To enforce identifiability
of 𝐴𝜓, one must enforce the consistency equation

𝑉 𝜋𝛿𝑡 (𝑠) = 𝑄𝜋𝛿𝑡(𝑠, 𝜋(𝑠)) (5.4.4)

on the approximate 𝐴𝜓 and 𝑉𝜃. This translates to

𝐴𝜓(𝑠, 𝜋(𝑠)) = 0. (5.4.5)



5.4. REINFORCEMENT LEARNING WITH A CONTINUOUS-TIME LIMIT 91

With this additional constraint, if 𝑄Θ = 𝑄𝜋𝛿𝑡, then 𝐴𝜓 = 𝐴𝜋𝛿𝑡 and 𝑉𝜃 = 𝑉 𝜋𝛿𝑡 : indeed

𝐴𝜋𝛿𝑡(𝑠, 𝑎) =
𝑄𝜋𝛿𝑡(𝑠, 𝑎)− 𝑉 𝜋𝛿𝑡 (𝑠)

𝛿𝑡
(5.4.6)

=
𝑄Θ(𝑠, 𝑎)−𝑄Θ(𝑠, 𝜋(𝑠))

𝛿𝑡
= 𝐴𝜓(𝑠, 𝑎). (5.4.7)

In the spirit of (Wang et al., 2015), instead of directly parameterizing 𝐴𝜓, we define a parametric
function 𝐴𝜓 (typically a neural network), and use 𝐴𝜓 to define 𝐴𝜓 as

𝐴𝜓(𝑠, 𝑎) := 𝐴𝜓(𝑠, 𝑎)−𝐴𝜓(𝑠, 𝜋(𝑠)) (5.4.8)

so that 𝐴𝜓 directly verifies the consistency condition.
This approach will lead to 𝛿𝑡-robust algorithms for approximating 𝐴𝜋𝛿𝑡, from which a ranking

of actions can be derived.

5.4.2 Timestep-Invariant Exploration
To obtain a timestep-invariant RL algorithm, a timestep-invariant exploration scheme is required.
For continuous actions, (Lillicrap et al., 2015) already introduced such a scheme, by adding
an Ornstein–Uhlenbeck (Uhlenbeck and Ornstein, 1930) (OU) random process to the actions.
Formally, this is defined as

𝜋explore(𝑠𝑘𝛿𝑡, 𝑧𝑘𝛿𝑡) := 𝜋(𝑠𝑘𝛿𝑡) + 𝑧𝑘𝛿𝑡 (5.4.9)

with 𝑧𝑘𝛿𝑡 the discretization of a continuous-time OU process,

𝑑𝑧𝑡 = −𝑧𝑡 𝜅 𝑑𝑡+ 𝜎 𝑑𝐵𝑡. (5.4.10)

where 𝐵𝑡 is a brownian motion, 𝜅 a stiffness parameter and 𝜎 a noise scaling parameter. The
discretized trajectories of 𝑧 converge to nontrivial continuous-time trajectories, exhibiting
Brownian behavior with a recall force towards 0.

This exploration can be extended to schemes of the form

𝑎𝑘𝛿𝑡 = 𝜋explore
𝛿𝑡 (𝑠𝑘𝛿𝑡, 𝑧𝑘𝛿𝑡) (5.4.11)

with (𝑧𝑘𝛿𝑡)𝑘⩾0 a sequence of random variables independent from the 𝑎’s and 𝑠’s. A sufficient
condition for this policy to admit a continuous-time limit is for the sequence 𝑧𝑘𝛿𝑡 to converge in
law to a well-defined continuous stochastic process 𝑧𝑡 as 𝛿𝑡 goes to 0.

Thus, for discrete actions we can obtain a consistent exploration scheme by taking 𝑧𝛿𝑡 to be
a discretization of an (#𝒜)-dimensional continuous OU process, and setting

𝜋explore(𝑠𝑘𝛿𝑡, 𝑧𝑘𝛿𝑡) := argmax
𝑎

(𝐴𝜓(𝑠𝑘𝛿𝑡, 𝑎) + 𝑧𝑘𝛿𝑡[𝑎]) (5.4.12)

where 𝑧𝑘𝛿𝑡[𝑎] denotes the 𝑎-th component of 𝑧𝑘𝛿𝑡. Namely, we perturb the advantage values by
a random process before selecting an action. The resulting scheme converges in continuous time
to a nontrivial exploration scheme.

On the other hand, 𝜀-greedy exploration is likely not to explore, i.e., to collapse to a
deterministic policy, when 𝛿𝑡 goes to 0. Intuitively, with very small 𝛿𝑡, changing the action at
random every 𝛿𝑡 time step just averages out the randomness due to the law of large numbers.
More precisely:

Theorem 5.4. Consider a near-continuous MDP in which an agent selects an action according
to an 𝜀-greedy policy that mixes a deterministic exploitation policy 𝜋 with an action taken from
a noise policy 𝜋noise(𝑎|𝑠) with probability 𝜀 at each step. Then the agent’s trajectories converge
when 𝛿𝑡→ 0 to the solutions of the deterministic equation

𝑑𝑠𝑡/𝑑𝑡 = (1− 𝜀)𝐹 (𝑠𝑡, 𝜋(𝑠𝑡)) + 𝜀E𝑎∼𝜋noise(𝑎|𝑠)𝐹 (𝑠𝑡, 𝑎) (5.4.13)
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Algorithm 4 Deep Advantage Updating (Discrete actions)

Inputs:
𝜃 and 𝜓, parameters of 𝑉𝜃 and 𝐴𝜓.
𝜋explore and 𝜈𝛿𝑡 defining an exploration policy.
opt𝑉 , opt𝐴, 𝛼𝑉 𝛿𝑡 and 𝛼𝐴𝛿𝑡 optimizers and learning rates.
𝒟, buffer of transitions (𝑠, 𝑎, 𝑟, 𝑑, 𝑠′), with 𝑑 the episode termination signal.
𝛿𝑡 and 𝛾, time discretization and discount factor.
nb_epochs number of epochs.
nb_steps, number of steps per epoch.

Observe initial state 𝑠0
𝑡← 0
for 𝑒 = 0,nb_epochs do

for 𝑗 = 1,nb_steps do
𝑎𝑘 ← 𝜋explore(𝑠𝑘, 𝜈𝑘𝛿𝑡).
Perform 𝑎𝑘 and observe (𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1).
Store (𝑠𝑘, 𝑎𝑘, 𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1) in 𝒟.
𝑘 ← 𝑘 + 1

end for
for 𝑘 = 0, nb_learn do

Sample a batch of 𝑁 random transitions from 𝒟
𝑄𝑖 ← 𝑉𝜃(𝑠

𝑖) + 𝛿𝑡
(︁
𝐴𝜓(𝑠

𝑖, 𝑎𝑖)−max
𝑎′

𝐴𝜓(𝑠
𝑖, 𝑎′)

)︁
𝑄𝑖 ← 𝑟𝑖𝛿𝑡+ (1− 𝑑𝑖)𝛾𝛿𝑡𝑉𝜃(𝑠′𝑖)

∆𝜃 ← 1
𝑁

𝑁∑︀
𝑖=1

(𝑄𝑖−𝑄𝑖)𝜕𝜃𝑉𝜃(𝑠𝑖)
𝛿𝑡

∆𝜓 ← 1
𝑁

𝑁∑︀
𝑖=1

(𝑄𝑖−𝑄𝑖)𝜕𝜓
(︂
𝐴𝜓(𝑠

𝑖,𝑎𝑖)−max
𝑎′

𝐴𝜓(𝑠
𝑖,𝑎′)

)︂
𝛿𝑡

Update 𝜃 with opt1, ∆𝜃 and learning rate 𝛼𝑉 𝛿𝑡.
Update 𝜓 with opt2, ∆𝜓 and learning rate 𝛼𝐴𝛿𝑡.

end for
end for

5.4.3 Algorithms for Deep Advantage Updating

We learn 𝑉𝜃 and 𝐴𝜓 via suitable variants of 𝑄-learning for continuous and discrete action
spaces. Namely, the true 𝐴𝜋𝛿𝑡 and 𝑉 𝜋𝛿𝑡 of a near-continuous MDP with greedy exploitation policy
𝜋(𝑠) := argmax𝑎′𝐴𝜋𝛿𝑡(𝑠, 𝑎

′) are the unique solution to the Bellman and consistency equations

𝑉 𝜋𝛿𝑡 (𝑠) + 𝛿𝑡𝐴𝜋𝛿𝑡(𝑠, 𝑎) = 𝑟 𝛿𝑡+ 𝛾𝛿𝑡 E𝑠′𝑉 𝜋𝛿𝑡 (𝑠′) (5.4.14)
𝐴𝜋𝛿𝑡(𝑠, 𝜋(𝑠)) = 0. (5.4.15)

as seen in 5.4.1. Thus 𝑉𝜃 and 𝐴𝜓 are trained to approximately solve these equations.

Maximization over actions for 𝜋 is implemented exactly for discrete actions, and, for
continuous actions, approximated by a policy neural network 𝜋𝜙(𝑠) trained to maximize
𝐴𝜓(𝑠, 𝜋𝜙(𝑠)), similarly to (Lillicrap et al., 2015).

Eq. (5.4.15) is directly verified by 𝐴𝜓, owing to the reparametrization 𝐴𝜓(𝑠, 𝑎) = 𝐴𝜓(𝑠, 𝑎)−
𝐴𝜓(𝑠, 𝜋(𝑠)), described in 5.4.1. To approximately verify (5.4.14), the corresponding squared
Bellman residual is minimized by an approximate gradient descent. The update equations when
learning from a transition (𝑠, 𝑎, 𝑟, 𝑠′), either from an exploratory trajectory or from a replay
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buffer (Mnih et al., 2015), are

𝛿𝑄𝛿𝑡 ← 𝐴𝜓(𝑠, 𝑎) 𝛿𝑡−
(︀
𝑟 𝛿𝑡+ 𝛾𝛿𝑡 𝑉𝜃(𝑠

′)− 𝑉𝜃(𝑠)
)︀

(5.4.16)

𝜃𝛿𝑡 ← 𝜃𝛿𝑡 + 𝜂𝑉𝛿𝑡 𝜕𝜃𝑉𝜃(𝑠)
𝛿𝑄𝛿𝑡
𝛿𝑡

(5.4.17)

𝜓𝛿𝑡 ← 𝜓𝛿𝑡 + 𝜂𝐴𝛿𝑡 𝜕𝜓𝐴𝜓(𝑠, 𝑎)
𝛿𝑄𝛿𝑡
𝛿𝑡

. (5.4.18)

where the 𝜂’s are learning rates. Appropriate scalings for the learning rates 𝜂𝑉𝛿𝑡 and 𝜂𝐴𝛿𝑡 in terms
of 𝛿𝑡 to obtain a well defined continuous limit are derived next.

5.4.4 Scaling the Learning Rates

Figure 5.1: Value functions obtained by DDPG (unscaled version) and DAU at different instants
in physical time of training on the pendulum swing-up environment. Each image represents the
learnt value function (the 𝑥-axis is the angle, and the 𝑦-axis the angular velocity). The lighter
the pixel, the higher the value.

For the algorithm to admit a continuous-time limit, the discrete-time trajectories of param-
eters must converge to well-defined trajectories as 𝛿𝑡 goes to 0. This in turn imposes precise
conditions on the scalings of the learning rates.

Informally, in the parameter updates (5.4.16)–(5.4.18), the quantity 𝛿𝑄𝛿𝑡 is of order 𝑂(𝛿𝑡),
because 𝑠′ = 𝑠 + 𝑂(𝛿𝑡) in a near-continuous system. Therefore, 𝛿𝑄𝛿𝑡/𝛿𝑡 is 𝑂(1), so that the
gradients used to update 𝜃 and 𝜓 are 𝑂(1). Therefore, if the learning rates are of order 𝛿𝑡, one
would expect the parameters 𝜃 and 𝜓 to change by 𝑂(𝛿𝑡) in each time interval 𝛿𝑡, thus hopefully
converging to smooth continuous-time trajectories. The next theorem formally confirms that
learning rates of order 𝛿𝑡 are the only possibility.

Theorem 5.5. Let (𝑠𝑡, 𝑎𝑡) be some exploration trajectory in a near-continuous MDP. Set the
learning rates to 𝜂𝑉𝛿𝑡 = 𝛼𝑉 𝛿𝑡𝛽 and 𝜂𝐴 = 𝛼𝐴𝛿𝑡𝛽 for some 𝛽 ⩾ 0, and learn the parameters 𝜃 and
𝜓 by iterating (5.4.16)–(5.4.18) along the trajectory (𝑠𝑡, 𝑎𝑡). Then, when 𝛿𝑡→ 0:

• If 𝛽 = 1 the discrete parameter trajectories converge to continuous parameter trajectories.

• If 𝛽 > 1 the parameters stay at their initial values.

• If 𝛽 < 1, the parameters can reach infinity in arbitrarily small physical time.

The resulting algorithm with suitable scalings, Deep Advantage Updating (DAU), is specified
in Alg. 4 for discrete actions, and in the Supplementary for continuous actions.
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Figure 5.2: Learning curves for DAU and DDPG on classic control benchmarks for various time
discretization 𝛿𝑡: Scaled return as a function of the physical time spent in the environment.

5.5 Experiments

The experiments provided here are specifically aimed at showing that the proposed method,
DAU, works efficiently over a wide range of time discretizations, without specific tuning, while
standard deep 𝑄-learning approaches do not. DAU is compared to DDPG for continuous actions
and to DQN for discrete actions. As mentionned earlier, we do not study the time discretization
invariance of on-policy methods (A3C, PPO, TRPO...).

In all setups, we use the algorithms described in Alg. 4 and Supplementary Alg. 1. The
variants of DDPG and DQN used are described in the Supplementary, as well as all hyperpa-
rameters. We tested two different setups for DDPG and DQN. In one, we scaled the discount
factor (to avoid shortsightedness with small 𝛿𝑡), but left all other hyperparameters constant
across time discretizations. In the other, we used the properly rescaled discount factor and
reward from Eq. (5.3.5), as well as 𝑂(𝛿𝑡) learning rates for RMSProp. The first variant yields
slightly better results, and is presented here, with the second variant in the Supplementary.
For all setups, quantitative results are averaged over five runs.

Let us stress that the quantities plotted are rescaled to make comparison possible across
different timesteps. For example, returns are given in terms of the discretized return 𝑅𝛿𝑡 as
defined in (5.3.4),3 and, most notably, time elapsed is always given in physical time, i.e., the
amount of time that the agent spent interacting with the environment (this is not the number
of steps).

Qualitative experiments: Visualizing policies and values. To provide qualitative
results, and check robustness to time discretization both in terms of returns and in terms of
convergence of the approximate value function and policies, we first provide results on the
simple pendulum environment from the OpenAI Gym classic control suite. The state space is
of dimension 2. We visualize both the learnt value and policy functions by plotting, for each
point of the phase diagram (𝜃, 𝜃), its value and policy. The results are presented in Fig. 5.1
(value function) and Figs. 1, 2, 3 in Supplementary.

3This mostly amounts to scaling rewards by a factor 𝛿𝑡 when this scaling is not naturally done in the
environment. Environment-specific details are given in the Supplementary.
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We plot the learnt policy at several instants in physical time during training, for various
time discretizations 𝛿𝑡, for both DAU and DDPG. With DAU, the agent’s policy and value
function quickly converge for every time discretization without specific tuning. On the contrary,
with DDPG, learning of both value function and policy vary greatly from one discretization to
another.

Quantitative experiments. We benchmark DAU against DDPG on classic control bench-
marks: Pendulum, Cartpole, BipedalWalker, Ant, and Half-Cheetah environments from OpenAI
Gym. On Pendulum, Bipedal Walker and Ant, DAU is quite robust to variations of 𝛿𝑡 and
displays reasonable performance in all cases. On the other hand, DDPG’s performance varies
with 𝛿𝑡; performance either degrades as 𝛿𝑡 decreases (Ant, Cheetah), or becomes more vari-
able as learning progresses (Pendulum) for small 𝛿𝑡. On Cartpole, noise dominates, making
interpretation difficult. On Half-Cheetah, DAU is not clearly invariant to time discretization.
This could be explained by the multiple suboptimal regimes that coexist in the Half-Cheetah
environment (walking on the head, walking on the back), which create discontinuities in the
value function (see Discussion).

5.6 Discussion

The method derived in this work is theoretically invariant to time discretization, and indeed
seems to yield improved timestep robustness on various environments, e.g., simple locomotion
tasks. However, on some environments there is still room for improvment. We discuss some of
the issues that could explain this theoretical/practical discrepancy.

Note that Alg. 4 requires knowledge of the timestep 𝛿𝑡. In most environments, this is readily
available, or even directly set by the practitioner: depending on the environment it is given by
the frame rate, the maximum frequency of actuators or observation acquisition, the timestep of
a physics simulator, etc.

Smoothness of the value function. In our proofs, 𝑉 𝜋 is assumed to be continuously
differentiable. This hypothesis is not always satisfied in practice. For instance, in the pendulum
swing-up environment, depending on initial position and momentum, the optimal policy may
need to oscillate before reaching the target state. The optimal value function is discontinuous
at the boundary between states where oscillations are needed and those where they are not.
This results in non-infinitesimal advantages for actions on the boundary. In such environments
where a given policy has different regimes depending on the initial state, the continuous-time
analysis only holds almost-everywhere.

Memory buffer size. Thm. 5.5 is stated for transitions sampled sequentially from a fixed
trajectory. In practice, transitions are sampled from a memory replay buffer, to prevent
excessive correlations. We used a fixed-size circular buffer, filled with samples from a single
growing exploratory trajectory. In our experiments, the same buffer size was used for all time
discretizations. Thus the physical-time freshness of samples in the buffer varies with the time
discretization, and in the strictest sense using a fixed-size buffer breaks timestep invariance. A
memory-intensive option would be to use a buffer of size 1

𝛿𝑡 (fixed memory in physical time).

Near-continuous reinforcement learning and RMSProp. RMSProp (Tieleman and
Hinton, 2012) divides gradient steps by the square root of a moving average estimate of the
second moment of gradients. This may interact with the learning rate scaling discussed above.
In deterministic environments, gradients typically scale as 𝑂(1) in terms of 𝛿𝑡, as seen in (5.4.18).
In that case, RMSProp preconditioning has no effect on the suitable order of magnitude for
learning rates. However, in near continuous stochastic environments (Eq. 5.3.2), variance of
𝛿𝑄𝛿𝑡/𝛿𝑡 and of the gradients typically scales as 𝑂 (1/𝛿𝑡). With a fixed batch size, RMSProp
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will multiply gradients by a factor 𝑂(
√
𝛿𝑡). In that case, learning rates need only be scaled as√

𝛿𝑡 instead of 𝛿𝑡.
More generally, the continuous-time analysis should in principle be repeated for every

component of a system. For instance, if a recurrent model is used to handle state memory or
partial observability, care should be taken that the model is able to maintain memory for a
non-infinitesimal physical time when 𝛿𝑡→ 0 (see e.g. Tallec and Ollivier 2018).

5.7 Conclusion

𝑄-learning methods have been found to fail to learn with small time steps, both theoretically
and empirically. A theoretical analysis help in building a practical off-policy deep RL algorithm
with better robustness to time discretization. This robustness is confirmed empirically.



Appendix

5.A Proofs
We now give proofs for all the results presented in the paper. Most proofs follow standard patterns from
calculus and numerical schemes for differential equations, except for Theorem 5.9, which uses an argument
specific to reinforcement learning to prove that the continuous-time advantage function contains all the necessary
information for policy improvement.

The first result presented is a proof of convergence for discretized trajectories.

Lemma 5.6. Let 𝐹 : 𝒮 ×𝒜 → R𝑛 and 𝜋 : 𝒮 → 𝒜 be the dynamic and policy functions. Assume that, for any 𝑎,
𝑠→ 𝐹 (𝑠, 𝑎) and 𝑠→ 𝐹 (𝑠, 𝜋(𝑠)) are 𝒞1, bounded and 𝐾-lipschitz. For a given 𝑠0, define the trajectory (𝑠𝑡)𝑡⩾0

as the unique solution of the differential equation

𝑑𝑠𝑡

𝑑𝑡
= 𝐹 (𝑠𝑡, 𝜋(𝑠𝑡)). (5.A.1)

For any 𝛿𝑡 > 0, define the discretized trajectory (𝑠𝑘𝛿𝑡)𝑘 which amounts to maintaining each action for a time
interval 𝛿𝑡; it is defined by induction as 𝑠0𝛿𝑡 = 𝑠0, 𝑠𝑘+1

𝛿𝑡 is the value at time 𝛿𝑡 of the unique solution of

𝑑𝑠𝑡

𝑑𝑡
= 𝐹 (𝑠𝑡, 𝜋(𝑠

𝑘
𝛿𝑡)) (5.A.2)

with initial point 𝑠𝑘𝛿𝑡. Then, there exists 𝐶 > 0 such that, for every 𝑡 ⩾ 0

‖𝑠𝑡 − 𝑠
⌊ 𝑡
𝛿𝑡

⌋
𝛿𝑡 ‖ ⩽ 𝛿𝑡

𝐶

𝐾
𝑒𝐾𝑡. (5.A.3)

Therefore, discretized trajectories converge pointwise to continuous trajectories.

Proof. The proof mostly follos the classical argument for convergence of the Euler scheme for differential
equations. For any 𝑘, define

𝑒𝑘𝛿𝑡 = ‖𝑠
𝑘
𝛿𝑡 − 𝑠𝛿𝑡𝑘‖. (5.A.4)

Let 𝑠𝑡 be the solution of Eq. (5.A.35) with initial state 𝑠𝑘𝛿 . This 𝑠𝑡 is 𝒞2 on [0, 𝛿𝑡]. Consequently, the Taylor
integral formula gives

𝑠𝑘+1
𝛿𝑡 = 𝑠𝑘𝛿𝑡 + 𝐹 (𝑠𝑘𝛿𝑡, 𝜋(𝑠

𝑘
𝛿𝑡))𝛿𝑡+

∫︁ 𝛿𝑡

0
(𝛿𝑡− 𝑡)

𝑑2𝑠𝑡

𝑑𝑡2
𝑑𝑡

𝑠𝛿𝑡(𝑘+1) = 𝑠𝛿𝑡𝑘 + 𝐹 (𝑠𝛿𝑡𝑘, 𝜋(𝑠𝛿𝑡𝑘))𝛿𝑡+

∫︁ 𝛿𝑡

0
(𝛿𝑡− 𝑡)

𝑑2𝑠𝑡+𝛿𝑡𝑘

𝑑𝑡2
𝑑𝑡.

Now, both 𝑑2𝑠𝑡/𝑑𝑡2 and 𝑑2𝑠𝑡/𝑑𝑡2 are uniformly bounded, by boundedness and Lipschitzness of 𝑠→ 𝐹 (𝑠, 𝜋(𝑠))
and 𝑠→ 𝐹 (𝑠, 𝜋(𝑠𝑘𝛿𝑡)). Consequently, there exists 𝐶 such that

𝑒𝑘+1
𝛿𝑡 ⩽ ‖𝑠𝑘𝛿𝑡 − 𝑠𝛿𝑡𝑘‖+ ‖𝐹 (𝑠𝑘𝛿𝑡, 𝜋(𝑠

𝑘
𝛿𝑡))− 𝐹 (𝑠𝛿𝑡𝑘, 𝜋(𝑠𝛿𝑡𝑘))‖𝛿𝑡+ 𝐶𝛿𝑡2

⩽ (1 +𝐾𝛿𝑡)𝑒𝑘𝛿𝑡 + 𝐶𝛿𝑡2.

Now, it is easy to prove by induction that

𝑒𝑘𝛿𝑡 ⩽ (1 +𝐾𝛿𝑡)𝑘(𝑒0𝛿𝑡 +
𝐶

𝐾
𝛿𝑡)−

𝐶

𝐾
𝛿𝑡. (5.A.5)

As 𝑒0𝛿𝑡 = 0, this translates to

𝑒𝑘𝛿𝑡 ⩽ ((1 +𝐾𝛿𝑡)𝑘 − 1)𝛿𝑡
𝐶

𝐾

⩽ (𝑒𝐾𝛿𝑡𝑘 − 1)𝛿𝑡
𝐶

𝐾
.

97
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Consequently,

𝑒
⌊𝑡/𝛿𝑡⌋
𝛿𝑡 ⩽ (𝑒𝐾(𝑡+𝛿𝑡) − 1)𝛿𝑡

𝐶

𝐾
. (5.A.6)

Finally, by boundedness, of 𝑠→ 𝐹 (𝑠, 𝜋(𝑠)), there exists 𝐶′ such that

‖𝑠𝛿𝑡⌊𝑡/𝛿𝑡⌋ − 𝑠𝑡‖ ⩽ 𝛿𝑡𝐶′. (5.A.7)

Combining Eq. (5.A.7) with Eq. (5.A.6), one can find 𝐶′′ such that

‖𝑠𝑡 − 𝑠⌊𝑡/𝛿𝑡⌋𝛿𝑡 ‖ ⩽ 𝛿𝑡
𝐶′′

𝐾
𝑒𝐾𝑡. (5.A.8)

In what follows, we assume that the continuous-time reward function 𝑟 : 𝒮 ×𝒜 → R is bounded, to ensure
existence of 𝑉 𝜋 and 𝑉 𝜋𝛿𝑡 for all 𝛿𝑡 .

Theorem 5.7. Assume that 𝑟 : 𝒮 × 𝒜 → R is bounded, and that 𝑠 → 𝑟(𝑠, 𝜋(𝑠)) is 𝐿𝑟-Lipschitz continuous,
then for all 𝑠 ∈ 𝒮, one has 𝑉 𝜋𝛿𝑡 (𝑠) = 𝑉 𝜋(𝑠) + 𝑜(1) when 𝛿𝑡→ 0.

Proof.
We use the notation 𝑟(𝑠) = 𝑟(𝑠, 𝜋(𝑠)). Let 𝑠𝑡𝛿𝑡 := 𝑠

⌊𝑡/𝛿𝑡⌋
𝛿𝑡 . We have:

𝑉 𝜋𝛿𝑡 (𝑠) =

∫︁
𝑡
𝛾𝑡𝑟(𝑠𝑡𝛿𝑡)𝑑𝑡+𝑂(𝛿𝑡)

Indeed:

𝑉 𝜋𝛿𝑡 (𝑠) =
∞∑︁
𝑘=0

𝛾𝑘𝛿𝑡𝑟(𝑠𝑘𝛿𝑡)𝛿𝑡

=

∞∑︁
𝑘=0

𝛾𝑘𝛿𝑡
∫︁ 𝑘+1

𝑢=𝑘
𝑟(𝑠𝑢𝛿𝑡𝛿𝑡 )𝑑𝑢

=

∞∑︁
𝑘=0

𝛿𝑡 log 𝛾

𝛾𝛿𝑡 − 1

∫︁ 𝑘+1

𝑢=𝑘
𝛾𝑢𝛿𝑡𝑟(𝑠𝑢𝛿𝑡𝛿𝑡 )𝑑𝑢

=
𝛿𝑡 log 𝛾

𝛾𝛿𝑡 − 1

∫︁ ∞

𝑡=0
𝛾𝑡𝑟(𝑠𝑡𝛿𝑡)𝑑𝑡

But:
𝛿𝑡 log 𝛾

𝛾𝛿𝑡 − 1
=

𝛿𝑡 log 𝛾

𝛿𝑡 log 𝛾 +𝑂(𝛿𝑡2)

= 1 +𝑂(𝛿𝑡)

Therefore:

𝑉 𝜋𝛿𝑡 (𝑠) =

∫︁
𝑡
𝛾𝑡𝑟(𝑠𝑡𝛿𝑡)𝑑𝑡+𝑂(𝛿𝑡)

We now have, for any 𝑇 > 0,

|𝑉 𝜋𝛿𝑡 (𝑠)− 𝑉
𝜋(𝑠)| = |

∫︁ ∞

𝑡=0
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡|+𝑂(𝛿𝑡)

= |
∫︁ 𝑇

𝑡=0
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡|

+ |
∫︁ ∞

𝑡=𝑇
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡|+𝑂(𝛿𝑡)

The second term can be bounded by the supremum of the reward:

|
∫︁ ∞

𝑡=𝑇
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡| ⩽ 2

‖𝑟‖∞
log( 1

𝛾
)
𝛾𝑇
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The first term can be bounded by using Lemma. 1:

|
∫︁ 𝑇

𝑡=0
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡| ⩽

∫︁ 𝑇

𝑡=0
𝛾𝑡𝐿𝑟‖𝑠𝑡 − 𝑠𝑡𝛿𝑡‖𝑑𝑡 (5.A.9)

⩽
∫︁ 𝑇

𝑡=0
𝐿𝑟

𝐶𝛿𝑡

𝐾
exp((𝐾 + log 𝛾)𝑡)𝑑𝑡 (5.A.10)

⩽
𝐿𝑟𝐶

𝐾(𝐾 + log 𝛾)
exp((𝐾 + log 𝛾)𝑇 )𝛿𝑡 (5.A.11)

Let us set 𝑇 := − 1
𝐾

log(𝛿𝑡). By plugging into Eq. (5.A.9), we have:

|
∫︁ ∞

𝑡=𝑇
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡| = 𝑂(𝛿𝑡− log 𝛾) = 𝑜(1).

By plugging 𝑇 into equation (5.A.11), we have:

|
∫︁ 𝑇

𝑡=0
𝛾𝑡
(︀
𝑟(𝑠𝑡𝛿𝑡)− 𝑟(𝑠𝑡)

)︀
𝑑𝑡| = 𝑂(𝛿𝑡−

log 𝛾
𝐾 ) = 𝑜(1),

yielding our result.

For the following proof, we further assume that both 𝑉 𝜋 and 𝑉 𝜋𝛿𝑡 are continuously differentiable, and that
the gradient and Hessian of 𝑉 𝜋𝛿𝑡 w.r.t. 𝑠 are uniformly bounded in both 𝑠 and 𝛿𝑡. We also assume convergence of
𝜕𝑠𝑉 𝜋𝛿𝑡 (𝑠) to 𝜕𝑠𝑉 𝜋(𝑠) for all 𝑠.

Theorem 5.8. Under the hypothesis above, there exists 𝐴𝜋 : 𝒮 → R such that 𝐴𝜋𝛿𝑡 converges pointwise to 𝐴𝜋
as 𝛿𝑡 goes to 0. Besides,

𝐴𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝜕𝑠𝑉
𝜋(𝑠)𝐹 (𝑠, 𝑎) + log 𝛾𝑉 𝜋(𝑠). (5.A.12)

Proof. Denote 𝑠𝑡𝛿𝑡(𝑠0) the evaluation at instant 𝑡 of the solution of 𝑑𝑠𝑡/𝑑𝑡 = 𝐹 (𝑠𝑡, 𝜋(𝑠0)) with starting point
𝑠0.

The Bellman equation on 𝑄𝜋𝛿𝑡 yields

𝑄𝜋𝛿𝑡(𝑠, 𝑎) = 𝑟(𝑠, 𝑎)𝛿𝑡+ 𝛾𝛿𝑡𝑉 𝜋𝛿𝑡 (𝑠
𝛿𝑡
𝛿𝑡(𝑠)).

For all 𝑠, a first-order Taylor expansion yields

𝑠𝛿𝑡𝛿𝑡(𝑠) = 𝑠+ 𝐹 (𝑠, 𝑎)𝛿𝑡+𝑂(𝛿𝑡2) (5.A.13)

where the constant in 𝑂() is uniformly bounded thanks to the assumptions on the Hessian. Thus, by uniform
boundedness of the Hessian of 𝑉 𝜋𝛿𝑡 ,

a

𝑄𝜋𝛿𝑡(𝑠, 𝑎) = 𝑟(𝑠, 𝑎)𝛿𝑡+(︀
1 + ln(𝛾)𝛿𝑡+𝑂(𝛿𝑡2)

)︀ (︀
𝑉 𝜋𝛿𝑡 (𝑠) + 𝛿𝑡𝜕𝑠𝑉

𝜋
𝛿𝑡 (𝑠)𝐹 (𝑠, 𝑎) +𝑂(𝛿𝑡2)

)︀
.

Now, this yields
𝐴𝜋𝛿𝑡(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + ln(𝛾)𝑉 𝜋𝛿𝑡 (𝑠) + 𝜕𝑠𝑉

𝜋
𝛿𝑡 (𝑠)𝐹 (𝑠, 𝑎) +𝑂(𝛿𝑡), (5.A.14)

and using the convergence of 𝑉 𝜋𝛿𝑡 (𝑠) to 𝑉 𝜋(𝑠) (Thm. 5.1) and 𝜕𝑠𝑉 𝜋𝛿𝑡 (𝑠) to 𝜕𝑠𝑉 𝜋(𝑠) (hypothesis) yields the
result with

𝐴𝜋(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + ln(𝛾)𝑉 𝜋(𝑠) + 𝜕𝑠𝑉
𝜋(𝑠)𝐹 (𝑠, 𝑎). (5.A.15)

aWithout boundedness of the Hessian, we cannot write the second order Taylor expansion of 𝑉 𝜋𝛿𝑡 (𝑠
𝛿𝑡
𝛿𝑡(𝑠)) in

term of 𝛿𝑡.

We now show that policy improvement works with the continous time advantage function, i.e.

Theorem 5.9. Let 𝜋 and 𝜋′ be two policies such that both 𝑠→ 𝑟(𝑠, 𝜋(𝑠)) and 𝑠→ 𝑟(𝑠, 𝜋′(𝑠)) are continuous.
Assume that both 𝑉 𝜋 and 𝑉 𝜋

′
are continuously differentiable. Define the advantage function for policies 𝜋 and

𝜋′ as in Eq. (5.A.15).
If for all 𝑠, 𝐴𝜋(𝑠, 𝜋′(𝑠)) ⩾ 0, then for all 𝑠, 𝑉 𝜋(𝑠) ⩽ 𝑉 𝜋

′
(𝑠). Moreover, if for all 𝑠, 𝑉 𝜋

′
(𝑠) > 𝑉 𝜋(𝑠), then

there exists 𝑠′ such that 𝐴𝜋(𝑠′, 𝜋′(𝑠′)) > 0.

Proof. Let (𝑠𝑡)𝑡⩾0 be a trajectory sampled from 𝜋′ i.e. solution of the equation

𝑑𝑠𝑡/𝑑𝑡 = 𝐹 (𝑠𝑡, 𝜋
′(𝑠𝑡)) (5.A.16)

with initial condition 𝑠0 = 𝑠.
Define

𝐵(𝑇 ) =

∫︁ 𝑇

𝑡=0
𝛾𝑡𝑟(𝑠𝑡, 𝜋

′(𝑠𝑡))𝑑𝑡+ 𝛾𝑇𝑉 𝜋(𝑠𝑇 ). (5.A.17)



100 CHAPTER 5. CONTINUOUS-TIME DEEP Q-LEARNING

This function if continuously differentiable, and its derivative is

�̇�(𝑇 ) = 𝛾𝑇 𝑟(𝑠𝑇 , 𝜋
′(𝑠𝑇 )) (5.A.18)

+ 𝛾𝑇 𝜕𝑠𝑉
𝜋(𝑠)𝐹 (𝑠, 𝜋′(𝑠)) + 𝛾𝑇 ln(𝛾)𝑉 𝜋(𝑠𝑇 ) (5.A.19)

= 𝛾𝑇𝐴𝜋(𝑠𝑇 , 𝜋
′(𝑠𝑇 )) (5.A.20)

⩾ 0. (5.A.21)

Thus 𝐵 is increasing, and 𝐵(0) = 𝑉 𝜋(𝑠), lim
𝑇→∞

𝐵(𝑡) = 𝑉 𝜋
′
(𝑠). Consequently, 𝑉 𝜋(𝑠) ⩽ 𝑉 𝜋

′
(𝑠). Furthermore, if

𝑉 𝜋(𝑠) < 𝑉 𝜋
′
(𝑠), then there exists 𝑇0 such that �̇�(𝑇0) > 0 (otherwise 𝐵 is constant), and 𝐴𝜋(𝑠𝑇0 , 𝜋

′(𝑠𝑇0 )) > 0.

Theorem 5.10. Let 𝒜 = R𝒜 be the action space, and let 𝒫1 = R𝑝1 and 𝒫2 = R𝑝2 be parameter spaces. Let
𝐴 : 𝒫1 × 𝒮 ×𝒜 → R and 𝑉 : 𝒫2 × 𝒮 → R be 𝒞2 function approximators with bounded gradients and Hessians.
Let (𝑎𝑡)𝑡⩾0 be a 𝒞1 exploratory action trajectory and (𝑠𝑡)𝑡⩾0 the resulting state trajectory, when starting from
𝑠0 and following 𝑑𝑠𝑡/𝑑𝑡 = 𝐹 (𝑠𝑡, 𝑎𝑡). Let 𝜃𝑘𝛿𝑡 and 𝜓𝑘𝛿𝑡 be the discrete parameter trajectories resulting from the
gradient descent steps in the main text, with learning rates 𝜂𝑉 = 𝛼𝑉 𝛿𝑡𝛽 and 𝜂𝐴 = 𝛼𝐴𝛿𝑡𝛽 for some 𝛽 ⩾ 0. Then,

• If 𝛽 = 1 the discrete parameter trajectories converge to continuous parameter trajectories as 𝛿𝑡 goes to 0.

• If 𝛽 > 1, parameter trajectories become stationary as 𝛿𝑡 goes to 0.

• If 𝛽 < 1, parameters can grow arbitrarily large after an arbitrarily small physical time when 𝛿𝑡 goes to 0.

Proof. Let (𝑠𝑡, 𝑎𝑡)𝑡⩾0 be the trajectory on which parameters are learnt. To simplify notations, define

𝐴𝜓(𝑠, 𝑎) = 𝐴𝜓(𝑠, 𝑎)−𝐴𝜓(𝑠, 𝜋(𝑠)). (5.A.22)

Define 𝐹 as

𝐹 𝜃(𝜃, 𝜓, 𝑠, 𝑎) = 𝛼𝑉 (𝑟(𝑠, 𝑎) + ln(𝛾)𝑉𝜃(𝑠)

+ 𝜕𝑠𝑉𝜃(𝑠)𝐹 (𝑠, 𝑎)−𝐴𝜓(𝑠, 𝑎))𝜕𝜃𝑉𝜃(𝑠)

𝐹𝜓(𝜃, 𝜓, 𝑠, 𝑎) = 𝛼𝐴(𝑟(𝑠, 𝑎) + ln(𝛾)𝑉𝜃(𝑠)

+ 𝜕𝑠𝑉𝜃(𝑠)𝐹 (𝑠, 𝑎)−𝐴𝜓(𝑠, 𝑎))𝜕𝜓𝐴𝜓(𝑠, 𝑎).

From the bounded Hessians and Gradients hypothesis, 𝑉 , 𝐴, 𝜕𝑠𝑉 , 𝜕𝜃𝑉 and 𝜕𝜓𝐴 are uniformly Lipschitz
continuous in 𝜃 and 𝜓, thus 𝐹 is Lipschitz continuous.

The discrete equations for parameters updates with learning rates 𝛼𝑉 𝛿𝑡𝛽 and 𝛼𝐴𝛿𝑡𝛽 are

𝛿𝑄 = 𝑟(𝑠𝑘𝛿𝑡, 𝑎𝑘𝛿𝑡)𝛿𝑡+ 𝛾𝛿𝑡𝑉𝜃𝑘
𝛿𝑡
(𝑠(𝑘+1)𝛿𝑡)

− 𝑉𝜃𝑘
𝛿𝑡
(𝑠𝑘𝛿𝑡)−𝐴𝜓(𝑠𝑘𝛿𝑡, 𝑎𝑘𝛿𝑡)

𝜃𝑘+1
𝛿𝑡 = 𝜃𝑘𝛿𝑡 + 𝛼𝑉 𝛿𝑡𝛽

𝛿𝑄

𝛿𝑡
𝜕𝜃𝑉𝜃𝑘

𝛿𝑡
(𝑠𝑘𝛿𝑡)

𝜓𝑘+1
𝛿𝑡 = 𝜓𝑘𝛿𝑡 + 𝛼𝐴𝛿𝑡𝛽

𝛿𝑄

𝛿𝑡
𝜕𝜓𝐴𝜃𝑘

𝛿𝑡
(𝑠𝑘𝛿𝑡, 𝑎𝑘𝛿𝑡)

Under uniform boundedness of the Hessian of 𝑠 ↦→ 𝑉𝜃(𝑠), one can show(︂
𝜃𝑘+1
𝛿𝑡

𝜓𝑘+1
𝛿𝑡

)︂
=

(︂
𝜃𝑘𝛿𝑡
𝜓𝑘𝛿𝑡

)︂
+ 𝛿𝑡𝛽𝐹 (𝜃𝑘𝛿𝑡, 𝜓

𝑘
𝛿𝑡, 𝑠𝑘𝛿𝑡, 𝑎𝑘𝛿𝑡) +𝑂(𝛿𝑡𝛽𝛿𝑡), (5.A.23)

with a 𝑂 independent of 𝑘. With the additional hypothesis that the gradient of (𝑠, 𝑎)→ 𝐴𝜓(𝑠, 𝑎) is uniformly
bounded, we have

• For 𝛽 = 1, a proof scheme identical to that of Thm. 5.6 shows that discrete trajectories converge
pointwise to continuous trajectories defined by the differential equation

𝑑

𝑑𝑡

(︂
𝜃𝑡
𝜓𝑡

)︂
= 𝐹 (𝜃𝑡, 𝜓𝑡, 𝑠𝑡, 𝑎𝑡), (5.A.24)

which admits unique solutions for all initial parameters, since 𝐹 is uniformly lipschitz continuous.

• Similarly, for 𝛽 > 1, the proof scheme of Thm. 5.6 shows that discrete trajectories converge pointwise
to continuous trajectories defined by the differential equation

𝑑

𝑑𝑡

(︂
𝜃𝑡
𝜓𝑡

)︂
= 0 (5.A.25)

and thus that trajectories shrink to a single point as 𝛿𝑡 goes to 0.
We now turn to proving that when 𝛽 < 1, trajectories can diverge instantly in physical time. Consider the
following continuous MDP,

𝑠𝑡 = sin(𝑡) (5.A.26)
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whatever the actions, with reward 0 everywhere and 0 < 𝛾 < 1. The resulting value function is 𝑉 (𝑠) = 0
(since there are no actions, 𝑉 is independent of a policy), and the advantage function is 0. We consider the
function approximator 𝑉𝜃(𝑠) = 𝜃𝑠 (which can represent the true value function). The update rule for 𝜃 is

𝛿𝑄𝑘𝛿𝑡 = 𝛾𝛿𝑡𝜃𝑘𝛿𝑡 sin((𝑘 + 1)𝛿𝑡)− 𝜃𝑘𝛿𝑡 sin(𝑘𝛿𝑡) (5.A.27)

𝜃𝑘+1
𝛿𝑡 = 𝜃𝑘𝛿𝑡 + 𝛼𝛿𝑡𝛽

𝛾𝛿𝑡𝜃𝑘𝛿𝑡 sin((𝑘 + 1)𝛿𝑡)− 𝜃𝑘𝛿𝑡 sin(𝑘𝛿𝑡)
𝛿𝑡

sin(𝑘𝛿𝑡) (5.A.28)

Set 𝐾𝛿𝑡 := ⌊𝛿𝑡−
𝛽+3
4 ⌋, then for all 𝑘 ⩽ 𝐾𝛿𝑡, 𝑜(𝑘𝛿𝑡) = 𝑜(1) and

𝜃𝑘+1
𝛿𝑡 = 𝜃𝑘𝛿𝑡(1 + 𝛼𝛿𝑡𝛽(1 + 𝑜(1)) sin(𝑘𝛿𝑡)) (5.A.29)

(5.A.30)

Let 𝜌𝑘𝛿𝑡 := log 𝜃𝑘𝛿𝑡. Then

𝜌𝑘𝛿𝑡 = 𝜌𝑘𝛿𝑡 + 𝛼𝑘𝛿𝑡𝛽+1 + 𝑜(𝑘𝛿𝑡𝛽+1). (5.A.31)

Finally,

𝜌
𝐾𝛿𝑡
𝛿𝑡 = 𝜌0𝛿𝑡 + 𝛼

𝐾𝛿𝑡(𝐾𝛿𝑡 + 1)

2
𝛿𝑡𝛽 + 𝑜(𝐾2

𝛿𝑡𝛿𝑡
𝛽+1) (5.A.32)

= 𝜌0𝛿 + 𝛼𝛿𝑡
𝛽−1
3 + 𝑜(𝛿𝑡

𝛽−1
3 ) (5.A.33)

−−−→
𝛿𝑡→0

+∞. (5.A.34)

Thus parameters diverge in an infinitesimal physical time when 𝛿𝑡 goes to 0.

Theorem 5.11. Let 𝐹 : 𝒮 ×𝒜 → R𝑛 be the dynamic, and 𝜋 : 𝒮 ×𝒜 → [0, 1] be the policy, such that 𝜋(𝑠, ·) is a
probability distribution over 𝒜. Assume that 𝐹 is 𝐶1 with bounded derivatives, and that 𝜋 is 𝐶1 and bounded.
For any 𝛿𝑡 > 0, define the discretized trajectory (𝑠𝑘𝛿𝑡)𝑘 which amounts to sample an action from 𝜋(𝑠, ·) and
maintaining each action for a time interval 𝛿𝑡; it is defined by induction as 𝑠0𝛿𝑡 = 𝑠0, 𝑠𝑘+1

𝛿𝑡 is the value at time
𝛿𝑡 of the unique solution of

𝑑𝑠𝑡

𝑑𝑡
= 𝐹 (𝑠𝑡, 𝑎𝑘) (5.A.35)

with 𝑎𝑘 ∼ 𝜋(𝑠𝑘𝛿𝑡, ·) and initial point 𝑠𝑘𝛿𝑡.
Then the agent’s trajectories converge when 𝛿𝑡→ 0 to the solutions of the deterministic equation:

𝑑𝑠𝑡

𝑑𝑡
= E𝑎∼𝜋(𝑠𝑡,·)𝐹 (𝑠𝑡, 𝑎). (5.A.36)

Notably, if 𝜋 is an epsilon greedy strategy that mixes a deterministic exploitation policy 𝜋deterministic with an
action taken from a noise policy 𝜋noise with probability 𝜀 at, the trajectory converge to the solutions of the
equation:

𝑑𝑠𝑡/𝑑𝑡 = (1− 𝜀)𝐹 (𝑠𝑡, 𝜋
deterministic(𝑠𝑡)) + 𝜀E𝑎∼𝜋noise(𝑎|𝑠)𝐹 (𝑠𝑡, 𝑎) (5.A.37)

Proof.
Consider (𝑠𝛿𝑡2 ) the random trajectory of a near-continuous MDP with time-discretization 𝛿𝑡2 obtained by

taking at each step 𝑘 an action 𝑎𝑘 along 𝑎𝑘 ∼ 𝜋(𝑎|𝑠𝑘𝛿𝑡2 ) independantly. We have:

𝑠
⌊1/𝛿𝑡⌋
𝛿𝑡2

= 𝑠0
𝛿𝑡2

+

⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝑠𝑘
𝛿𝑡2
− 𝑠𝑘−1

𝛿𝑡2
+𝑂(𝛿𝑡2)

= 𝑠0
𝛿𝑡2

+

⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝐹 (𝑠𝑘−1
𝛿𝑡2

, 𝑎𝑘−1)𝛿𝑡
2 +𝑂(𝛿𝑡2)

We define 𝑓(𝑠) := E𝑎∼𝜋(𝑠) [𝐹 (𝑠, 𝑎)] =
∫︀
𝑎∈𝒜 𝐹 (𝑠, 𝑎)𝜋(𝑠, 𝑎). Since 𝜋 and 𝐹 are bounded and 𝐶1, we know

that 𝑓 is 𝐶1. We have:

𝑠
⌊1/𝛿𝑡⌋
𝛿𝑡2

= 𝑠0
𝛿𝑡2

+

⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝑓(𝑠𝑘−1
𝛿𝑡2

)𝛿𝑡2

+

⌊1/𝛿𝑡⌋∑︁
𝑘=1

(𝐹 (𝑠𝑘−1
𝛿𝑡2

, 𝑎𝑘−1)− 𝑓(𝑠𝑘−1
𝛿𝑡2

))𝛿𝑡2 +𝑂(𝛿𝑡2)

𝑠
⌊1/𝛿𝑡⌋
𝛿𝑡2

= 𝑠0
𝛿𝑡2

+

⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝑓(𝑠𝑘−1
𝛿𝑡2

)𝛿𝑡2 + 𝜉 +𝑂(𝛿𝑡2)
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with 𝜉 := 𝛿𝑡2
∑︀⌊1/𝛿𝑡⌋
𝑘=1

(︁
𝐹 (𝑠𝑘−1

𝛿𝑡2
, 𝑎𝑘−1)− 𝑓(𝑠𝑘−1

𝛿𝑡2
)
)︁
. By definition, we have E[𝜉] = 0. Moreover, by using the

independance of actions and the boundness of F, there is 𝜎 > 0 such that:

E[‖𝜉‖2] ⩽ 𝜎2𝛿𝑡3

We know that 𝑓 is 𝐶1 on a compact space. Therefore, there is 𝐿𝑓 such that 𝑓 is 𝐿𝑓 Lipschitz, and we
have:

‖

⎛⎝⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝑓(𝑠𝑘−1
𝛿𝑡2

)𝛿𝑡

⎞⎠− 𝑓(𝑠0
𝛿𝑡2

)‖ ⩽ 𝛿𝑡𝐿𝑓

⌊1/𝛿𝑡⌋∑︁
𝑘=1

‖𝑠𝑘−1
𝛿𝑡2
− 𝑠0

𝛿𝑡2
‖

Since 𝐹 is bounded, we know that ‖𝑠𝑘
𝛿𝑡2
− 𝑠𝑘−1

𝛿𝑡2
‖ ⩽ 𝐶𝛿𝑡. Therefore:

‖

⎛⎝⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝑓(𝑠𝑘−1
𝛿𝑡2

)𝛿𝑡

⎞⎠− 𝑓(𝑠0
𝛿𝑡2

)‖ ⩽ 𝛿𝑡𝐿𝑓𝐶

⌊1/𝛿𝑡⌋∑︁
𝑘=1

𝑘𝛿𝑡

= 𝑂(𝛿𝑡2)

Therefore:

𝑠
⌊1/𝛿𝑡⌋
𝛿𝑡2

= 𝑠0
𝛿𝑡2

+ 𝑓(𝑠0
𝛿𝑡2

)𝛿𝑡+ 𝜉 +𝑂(𝛿𝑡2)

Therefore, we have 𝑎 > 0 such that ‖𝑠⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠0
𝛿𝑡2
− 𝑓(𝑠0

𝛿𝑡2
)𝛿𝑡‖ ⩽ ‖𝜉‖+ 𝑎𝛿𝑡2

We define (𝑠𝛿𝑡) the deterministic near-continuous process with time discretization 𝛿𝑡 defined by 𝑠𝑘+1
𝛿𝑡 :=

𝑠𝑘𝛿𝑡 + 𝑓(𝑠𝑘𝛿𝑡)𝛿𝑡. We have:

‖𝑠(𝑘+1)⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘+1
𝛿𝑡 ‖

⩽ ‖𝑠(𝑘+1)⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑓(𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

)𝛿𝑡‖

+ ‖𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

+ 𝑓(𝑠
𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

)𝛿𝑡− 𝑠𝑘+1
𝛿𝑡 ‖

We know that
‖𝑠(𝑘+1)⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑓(𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

)𝛿𝑡‖ ⩽ ‖𝜉𝑘‖+ 𝑎𝛿𝑡2 (5.A.38)
Moreover:

‖𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

+ 𝑓(𝑠
𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

)𝛿𝑡− 𝑠𝑘+1
𝛿𝑡 ‖

⩽ ‖𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘𝛿𝑡‖+ 𝛿𝑡‖𝑓(𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

)− 𝑓(𝑠𝑘𝛿𝑡)‖

⩽ (1 + 𝐿𝑓 𝛿𝑡)‖𝑠
𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘𝛿𝑡‖

Therefore, we have:

‖𝑠(𝑘+1)⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘+1
𝛿𝑡 ‖

⩽ ‖𝜉𝑘‖+ 𝑎𝛿𝑡2 + (1 + 𝐿𝑓 𝛿𝑡)‖𝑠
𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘𝛿𝑡‖

By induction, and by taking 𝑘 = ⌊𝑡/𝛿𝑡⌋:

‖𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘𝛿𝑡‖ ⩽
𝑎𝛿𝑡

𝐿𝑓
exp(𝐿𝑓 𝑡) +

⌊𝑡/𝛿𝑡⌋∑︁
𝑗=0

(1 + 𝛿𝑡𝐿𝑓 )
𝑗‖𝜉𝑗‖

Therefore, if 𝜀 > 0, we have :

P
(︁
‖𝑠𝑘⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘𝛿𝑡‖ > 𝜀
)︁

⩽ P

⎛⎝⌊𝑡/𝛿𝑡⌋∑︁
𝑗=0

(1 + 𝛿𝑡𝐿𝑓 )
𝑗‖𝜉𝑗‖ > 𝜀−

𝑎𝛿𝑡

𝐿𝑓
exp(𝐿𝑓 𝑡)

⎞⎠
⩽

E
[︁∑︀⌊𝑡/𝛿𝑡⌋

𝑗=0 (1 + 𝛿𝑡𝐿𝑓 )
𝑗‖𝜉𝑗‖

]︁
𝜀− 𝑎𝛿𝑡

𝐿𝑓
exp(𝐿𝑓 𝑡)

⩽
E [‖𝜉‖]

𝜀− 𝑎𝛿𝑡
𝐿𝑓

exp(𝐿𝑓 𝑡)

exp(𝐿𝑓 𝑡)

𝐿𝑓 𝛿𝑡
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But E [‖𝜉‖] ⩽
√︀

E [‖𝜉‖2] ⩽ 𝜎𝛿𝑡3/2. Therefore, we have:

P
(︁
‖𝑠⌊𝑡/𝛿𝑡⌋⌊1/𝛿𝑡⌋
𝛿𝑡2

− 𝑠𝑘𝛿𝑡‖ > 𝜀
)︁
= 𝑂(

√
𝛿𝑡)

Therefore, the process 𝑡 ↦→ 𝑠
⌊𝑡/𝛿𝑡⌋⌊1/𝛿𝑡⌋
𝛿𝑡2

converges in probability to 𝑠. Furthermore, by a similar argument
than in Lemma 1, we know that the discretized process 𝑠 converge to the continuous process defined by
𝑑𝑠
𝑑𝑡

= 𝑓(𝑠𝑡). We can conclude ou result.

5.B Implementation details
All the details specifying our implementation are given in this section. We first give precise pseudo code
descriptions for both Continuous Deep Advantage Updating (Alg. 5), as well as the variants of DDPG (Alg. 6)
and DQN (Alg. 7) used.

Algorithm 5 Continuous DAU
Inputs:
𝜃, 𝜓 and 𝜙, parameters of 𝑉𝜃, 𝐴𝜓 and 𝜋𝜙.
𝜋explore and 𝜈𝛿𝑡 defining an exploration policy.
opt𝑉 , opt𝐴, opt𝜋, 𝛼𝑉 𝛿𝑡, 𝛼𝐴𝛿𝑡 and 𝛼𝜋𝛿𝑡, optimizers and learning rates.
𝒟, buffer of transitions (𝑠, 𝑎, 𝑟, 𝑑, 𝑠′), with 𝑑 the episode termination signal.
𝛿𝑡 and 𝛾, time discretization and discount factor.
nb_epochs number of epochs.
nb_steps, number of steps per epoch.

Observe initial state 𝑠0
𝑡← 0
for 𝑒 = 0,nb_epochs do

for 𝑗 = 1,nb_steps do
𝑎𝑘 ← 𝜋explore(𝑠𝑘, 𝜈𝑘𝛿𝑡).
Perform 𝑎𝑘 and observe (𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1).
Store (𝑠𝑘, 𝑎𝑘, 𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1) in 𝒟.
𝑘 ← 𝑘 + 1

end for
for 𝑘 = 0, nb_learn do

Sample a batch of 𝑁 random transitions from 𝒟
𝑄𝑖 ← 𝑉𝜃(𝑠

𝑖) + 𝛿𝑡
(︀
𝐴𝜓(𝑠

𝑖, 𝑎𝑖)−𝐴𝜓(𝑠𝑖, 𝜋𝜙(𝑠𝑖))
)︀

𝑄𝑖 ← 𝑟𝑖𝛿𝑡+ (1− 𝑑𝑖)𝛾𝛿𝑡𝑉𝜃(𝑠′𝑖)

∆𝜃 ← 1
𝑁

𝑁∑︀
𝑖=1

(𝑄𝑖−𝑄𝑖)𝜕𝜃𝑉𝜃(𝑠𝑖)
𝛿𝑡

∆𝜓 ← 1
𝑁

𝑁∑︀
𝑖=1

(𝑄𝑖−𝑄𝑖)𝜕𝜓(𝐴𝜓(𝑠𝑖,𝑎𝑖)−𝐴𝜓(𝑠𝑖,𝜋𝜙(𝑠𝑖)))
𝛿𝑡

∆𝜙← 1
𝑁

𝑁∑︀
𝑖=1

𝜕𝑎𝐴𝜓(𝑠
𝑖, 𝜋𝜙(𝑠

𝑖))𝜕𝜙𝜋𝜙(𝑠
𝑖)

Update 𝜃 with opt𝑉 , ∆𝜃 and learning rate 𝛼𝑉 𝛿𝑡.
Update 𝜓 with opt𝐴, ∆𝜓 and learning rate 𝛼𝐴𝛿𝑡.
Update 𝜙 with opt𝜋, ∆𝜙 and learning rate 𝛼𝜋𝛿𝑡.

end for
end for

For DDPG and DQN, two different settings were experimented with:
• One with time discretization scalings, to keep the comparison fair. In this setting, the discount factor is

still scaled as 𝛾𝛿𝑡, rewards are scaled as 𝑟𝛿𝑡, and learning rates are scaled to obtain parameter updates
of order 𝛿𝑡. As RMSprop is used for all experiments, this amounts to using a learning rate scaling as
𝛼𝑄 = �̃�𝑄𝛿𝑡, 𝛼𝜋 = �̃�𝜋𝛿𝑡.

• One without discretization scalings. In that case, only the discount factor is scaled as 𝛾𝛿𝑡, to prevent
unfair shortsightedness. All other parameters are set with a reference 𝛿𝑡0 = 1𝑒− 2. For instance, for all
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Algorithm 6 DDPG
Inputs:
𝜓 and 𝜙, parameters of 𝑄𝜓 and 𝜋𝜙.
𝜓′ and 𝜙′, parameters of target networks 𝑄𝜓′ and 𝜋𝜙′ .
𝜋explore and 𝜈 defining an exploration policy.
opt𝑄, opt𝜋, 𝛼𝑄 and 𝛼𝜋, optimizers and learning rates.
𝒟, buffer of transitions (𝑠, 𝑎, 𝑟, 𝑑, 𝑠′), with 𝑑 the episode termination signal.
𝛾 discount factor.
𝜏 target network update factor.
nb_epochs number of epochs.
nb_steps, number of steps per epoch.

Observe initial state 𝑠0
𝑡← 0
for 𝑒 = 0,nb_epochs do

for 𝑗 = 1,nb_steps do
𝑎𝑘 ← 𝜋explore(𝑠𝑘, 𝜈𝑘).
Perform 𝑎𝑘 and observe (𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1).
Store (𝑠𝑘, 𝑎𝑘, 𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1) in 𝒟.
𝑘 ← 𝑘 + 1

end for
for 𝑘 = 0, nb_learn do

Sample a batch of 𝑁 random transitions from 𝒟
𝑄𝑖 ← 𝑟𝑖 + (1− 𝑑𝑖)𝛾𝑄𝜓′(𝑠′𝑖, 𝜋𝜙′(𝑠′𝑖))

∆𝜓 ← 1
𝑁

𝑁∑︀
𝑖=1

(︁
𝑄𝑖 −𝑄𝑖

)︁
𝜕𝜓𝑄(𝑠𝑖, 𝑎𝑖)

∆𝜙← 1
𝑁

𝑁∑︀
𝑖=1

𝜕𝑎𝑄𝜓(𝑠
𝑖, 𝜋𝜙(𝑠

𝑖))𝜕𝜙𝜋𝜙(𝑠
𝑖)

Update 𝜓 with opt𝑄, ∆𝜓 and learning rate 𝛼𝑄.
Update 𝜙 with opt𝜋, ∆𝜙 and learning rate 𝛼𝜋.
𝜓′ ← 𝜏𝜓′ + (1− 𝜏)𝜓
𝜙′ ← 𝜏𝜙′ + (1− 𝜏)𝜙

end for
end for
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Algorithm 7 DQN
Inputs:
𝜓 parameter of 𝑄𝜓.
𝜓′, parameters of target networks 𝑄𝜓′ .
𝜋explore and 𝜈 defining an exploration policy.
opt𝑄, 𝛼𝑄 optimizer and learning rate.
𝒟, buffer of transitions (𝑠, 𝑎, 𝑟, 𝑑, 𝑠′), with 𝑑 the episode termination signal.
𝛾 discount factor.
𝜏 target network update factor.
nb_epochs number of epochs.
nb_steps, number of steps per epoch.

Observe initial state 𝑠0
𝑡← 0
for 𝑒 = 0,nb_epochs do

for 𝑗 = 1,nb_steps do
𝑎𝑘 ← 𝜋explore(𝑠𝑘, 𝜈𝑘).
Perform 𝑎𝑘 and observe (𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1).
Store (𝑠𝑘, 𝑎𝑘, 𝑟𝑘+1, 𝑑𝑘+1, 𝑠𝑘+1) in 𝒟.
𝑘 ← 𝑘 + 1

end for
for 𝑘 = 0, nb_learn do

Sample a batch of 𝑁 random transitions from 𝒟
𝑄𝑖 ← 𝑟𝑖 + (1− 𝑑𝑖)𝛾max

𝑎′
𝑄𝜓′(𝑠′𝑖, 𝑎′)

∆𝜓 ← 1
𝑁

𝑁∑︀
𝑖=1

(︁
𝑄𝑖 −𝑄𝑖

)︁
𝜕𝜓𝑄(𝑠𝑖, 𝑎𝑖)

Update 𝜓 with opt𝑄, ∆𝜓 and learning rate 𝛼𝑄.
𝜓′ ← 𝜏𝜓′ + (1− 𝜏)𝜓

end for
end for
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𝛿𝑡’s, the reward perceived is 𝑟 * 𝛿𝑡0, and similarily for learning rates, 𝛼𝑄 = �̃�𝑄𝛿𝑡0, 𝛼𝜋 = �̃�𝑄𝛿𝑡0. These
scalings don’t depend on the discretization, but perform decently at least for the highest discretization.

5.B.1 Global hyperparameters
The following hyperparameters are maintained constant throughout all our experiments,

• All networks used are of the form

Sequential(
Linear(nb_inputs, 256),
LayerNorm(256),
ReLU(),
Linear(256, 256),
LayerNorm(256),
ReLU(),
Linear(256, nb_outputs)

).

Policy networks have an additional tanh layer to constraint action range. On certain environments,
network inputs are normalized by applying a mean-std normalization, with mean and standard deviations
computed on each individual input features, on all previously encountered samples.

• 𝒟 is a cyclic buffer of size 1000000.

• nb_steps is set to 10, and 256 environments are run in parallel to accelerate the training procedure,
totalling 2560 environment interactions between learning steps.

• nb_learn is set to 50.

• The physical 𝛾 is set to 0.8. It is always scaled as 𝛾𝛿𝑡 (even for unscaled DQN and DDPG).

• 𝑁 , the batch size is set to 256.

• RMSprop is used as an optimizer without momentum, and with 𝛼 = 1− 𝛿𝑡 (or 1− 𝛿𝑡0 for unscaled DDPG
and DQN).

• Exploration is always performed as described in the main text. The OU process used as parameters
𝜅 = 7.5, 𝜎 = 1.5.

• Unless otherwise stated, 𝛼1 := �̃�𝑄 = 𝛼𝑉 = 𝛼𝐴 = 0.1, 𝛼2 := �̃�𝜋 = 𝛼𝜋 = 0.03.

• 𝜏 = 0.9

5.B.2 Environment dependent hyperparameters
We hereby list the hyperparameters used for each environment. Continuous actions environments are marked
with a (C), discrete actions environments with a (D).

• Ant (C): State normalization is used. Discretization range: [0.05, 0.02, 0.01, 0.005, 0.002].

• Cheetah (C): State normalization is used. Discretization range: [0.05, 0.02, 0.01, 0.005, 0.002]

• Bipedal Walker (C)4: State normalization is used, 𝛼2 = 0.02. Discretization range: [0.01, 0.005, 0.002, 0.001].

• Cartpole (D): 𝛼2 = 0.02, 𝜏 = 0. Discretization range: [0.01, 0.005, 0.002, 0.001, 0.0005].

• Pendulum (C): 𝛼2 = 0.02, 𝜏 = 0. Discretization range: [0.01, 0.005, 0.002, 0.001, 0.0005].

5.C Additional results
Additional results mentionned in the text are presented in this section.

4The reward for Bipedal Walker is modified not to scale with 𝛿𝑡. This does not introduce any change for the
default setup.
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Figure 5.3: Policies obtained by DDPG (unscaled version) and AU at different instants in
physical time of training on the pendulum swing-up environment. Each image represents the
policy learnt by the policy network, with 𝑥-axis representing angle, and 𝑦-axis angular velocity.
The lighter the pixel, the closer to 1 the action, the darker, the closer to −1.

Figure 5.4: Policies obtained by DDPG (scaled version) and AU at different instants in physical
time of training on the pendulum swing-up environment. Each image represents the policy
learnt by the policy network, with 𝑥-axis representing angle, and 𝑦-axis angular velocity. The
lighter the pixel, the closer to 1 the action, the darker, the closer to −1.
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Figure 5.5: Value functions obtained by DDPG (scaled version) and AU at different instants in
physical time of training on the pendulum swing-up environment. Each image represents the
value function learnt, with 𝑥-axis representing angle, and 𝑦-axis angular velocity. The lighter
the pixel, the higher the value.
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Chapter 6

The Successor States Operator

We now introduce the successor states operator, and its main properties. We start in Section 6.1
with the case of finite state spaces, for which all the objects can be seen as vectors or matrices.
This is the case treated in (Dayan, 1993). We then formally define the successor states operator
in general state spaces (Section 6.2).

6.1 The Successor State Matrix in a Finite State Space

We first consider a Markov Processℳ with a finite state space 𝒮 = {1, ..., 𝑆}, a transition matrix
𝑃𝑠1,𝑎,𝑠2 , and a policy 𝜋(𝑎|𝑠). We consider the transition matrix 𝑃𝜋𝑠1,𝑠2 =

∑︀
𝑎∈𝒜 𝜋(𝑎|𝑠1)𝑃𝑠1,𝑎,𝑠2

defined when using policy 𝜋 in the Markov Decision process. In the following, unless explicitly
specified, the policy 𝜋 is always fixed, and we only consider the Markov Reward Process obtained
when using policy 𝜋 in ℳ. For simplicity, we write 𝑃 for 𝑃𝜋, 𝑉 for 𝑉 𝜋, and 𝑀 for 𝑀𝜋.

Informally, for finite state spaces (Dayan, 1993), given two states 𝑠1 and 𝑠2 in a Markov
process, the successor state matrix 𝑀 is a matrix whose entry 𝑀𝑠1𝑠2 can be interpreted as:

• 𝑀𝑠1𝑠2 is the expected discounted time spent at 𝑠2 if starting the process at 𝑠1. Thus, lines
of 𝑀 contain the expected future occupancy measure for all starting points.

• 𝑀𝑠1𝑠2 is also the value function at 𝑠1 if the reward is located at 𝑠2. Thus, columns of 𝑀
contain the value functions of all single-target rewards.

We can now define the Successor State Operator 𝑀 for finite state spaces.

Definition-Theorem 6.1. Let ℳ be a finite Markov Reward Process, and 𝑃 its transition
matrix.

We define the Laplace operator as ∆ := Id−𝛾𝑃 . Then, ∆ is invertible, and we define the
successor state matrix 𝑀 as:

𝑀 := ∆−1 = (Id−𝛾𝑃 )−1 (6.1.1)

Moreover, we have:
𝑀 =

∑︁
𝑡⩾0

(𝛾𝑃 )𝑡 (6.1.2)

The formal proof will be given in the general case, with Theorem 6.4. Still, we will give
here formal statements and proofs in the tabular case, as the tabular case is more simple than
the general continuous state space case, and makes it easier to understand.

The following proposition shows the connection between 𝑀 and the expected future occu-
pancy of a trajectory:

Proposition 6.2. Let ℳ be a finite Markov Reward Process.
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We consider a stochastic trajectory (𝑆𝑡)𝑡⩾0 starting at 𝑆0 = 𝑠0 and following policy 𝜋. We
define an independent random variable 𝑇 ∼ Geom(1− 𝛾) (P(𝑇 = 𝑡) = (1− 𝛾)𝛾𝑡), and consider
𝑆𝑇 , the agent’s position at random time step 𝑇 . Then, we have:

P(𝑆𝑇 = 𝑠) = (1− 𝛾)𝑀𝑠0,𝑠 (6.1.3)

Hence, 𝑀𝑠0,𝑠 measures the expected time a trajectory starting in 𝑠0 will spend in 𝑠, if the time
is discounted by 𝛾. We say that 𝑀𝑠0,. is the discounted future occupancy measure starting from
𝑠0.

Proof.

P(𝑆𝑇 = 𝑠) =
∑︁
𝑡⩾0

(1− 𝛾)𝛾𝑡P(𝑆𝑡 = 𝑠) = (1− 𝛾)
∑︁
𝑡⩾0

𝛾𝑡𝑃 𝑡𝑠0𝑠 = (1− 𝛾)𝑀𝑠0,𝑠 (6.1.4)

The following proposition makes the connection between the successor state matrix and the
value function. This proposition will allow us to derive policy evaluation algorithms via the
successor state operator.

Proposition 6.3. Let ℳ be a finite Markov Reward Process. Then 𝑀 is the matrix that
transforms a reward function into the corresponding value function: for any reward function
𝑅 ∈ R𝑆, the associated value function in ℳ with policy 𝜋 is:

𝑉 =𝑀𝑅. (6.1.5)

Proof. Let (𝑆𝑡, 𝑅𝑡)𝑡⩾0 be a stochastic trajectory starting at 𝑆0 = 𝑠0 and following policy 𝜋. We have:

𝑉 (𝑠0) = E

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅𝑡

⎤⎦ =
∑︁
𝑡⩾0

𝛾𝑡
∑︁
𝑠

(𝑃 𝑡)𝑠0,𝑠𝑅(𝑠) =
∑︁
𝑠

⎛⎝∑︁
𝑡⩾0

𝛾𝑡(𝑃 𝑡)𝑠0,𝑠

⎞⎠𝑅(𝑠) = (𝑀𝑅)𝑠0 (6.1.6)

In the next section, we generalize these results to general (continuous) state spaces.

6.2 The Successor State Operator in a General State Space

𝑀 is also well-defined in general state spaces, using the Markov process formalism of Section 3.2.1,
as follows. This extends (Dayan, 1993) to arbitrary 𝒮.

Interpreting 𝑃 and the successor state as operators on functions over 𝒮 clarifies the statements
of the results below. We follow the standard theory of Markov kernels (Hairer, 2010, 2006). We
denote by 𝐵(𝒮) the set of bounded measurable functions on 𝒮. 𝑃 acts on such functions as
follows. If 𝑓 is a function in 𝐵(𝒮), 𝑃𝑓 is defined as

(𝑃𝑓)(𝑠) := E𝑠′∼𝑃 (𝑠,d𝑠′) [𝑓(𝑠
′)] . (6.2.1)

This is compatible with the matrix notation 𝑃𝑓 in the finite case, viewing 𝑓 as a vector. In the
text, we freely identify Markov kernels with the corresponding operators.

If 𝑃1 and 𝑃2 are two such Markov kernel operators, their composition 𝑃1𝑃2 is again a Markov
kernel operator, and coincides with matrix multiplication in the finite case. In particular, 𝑃𝑛
represents 𝑛 steps of 𝑃 . The identity operator Id corresponds to always staying in the same
state, namely, a transition operator 𝑃 (𝑠,d𝑠′) = 𝛿𝑠(d𝑠

′) with 𝛿𝑠 the Dirac measure at 𝑠.
We denote ∆ := Id−𝛾𝑃 , the discrete Laplace operator of the Markov process. Finally, if 𝐴

is an operator acting on functions over 𝒮, we denote its inverse by 𝐴−1, if it exists.

Theorem 6.4. The successor state operator 𝑀 of a Markov reward process is defined as

𝑀 :=
∑︁
𝑛⩾0

𝛾𝑛𝑃𝑛, 𝑀(𝑠1,d𝑠2) =
∑︁
𝑛⩾0

𝛾𝑛𝑃𝑛(𝑠1,d𝑠2). (6.2.2)

where 𝑃 0 := Id as on operator on 𝐵(𝒮), and equivalently 𝑃 0(𝑠1,d𝑠2) = 𝛿𝑠1(d𝑠2) as a measure.
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• For each 𝑠1, 𝑀(𝑠1,d𝑠2) is a measure on 𝑠2, with total mass 𝑀(𝑠1,𝒮) = 1
1−𝛾 . If (𝑆𝑡)𝑡⩾0

is a stochastic trajectory starting at 𝑆0 = 𝑠0, and if we define an independent random
variable 𝑇 ∼ Geom(1− 𝛾) (P(𝑇 = 𝑡) = (1− 𝛾)𝛾𝑡), and consider 𝑆𝑇 , the agent’s position
at random time step 𝑇 . Then, we have:

𝑠𝑡 ∼ (1− 𝛾)𝑀(𝑠0,d𝑠) (6.2.3)

• 𝑀 is a well-defined operator over the set 𝐵(𝒮) of bounded measurable functions on 𝒮.
Moreover,

𝑀 = (Id−𝛾𝑃 )−1 (6.2.4)
as operators over 𝐵(𝒮)

• For any reward function 𝑅, we have:

𝑉 =𝑀𝑅 (6.2.5)

Similarly to the successor state operator 𝑀(𝑠1,d𝑠2), we can define a state-action successor
operator 𝑄(𝑠, 𝑎,d𝑠2), the expected discounted time spent in d𝑠2 if starting from 𝑠 and doing
action 𝑎. While 𝑀(𝑠,d𝑠2) is comparable to the value function 𝑉 (𝑠), the state-action successor
operator 𝑄(𝑠, 𝑎,d𝑠2) is comparable to the 𝑄 function. This will be discussed in Section 7.9.

Proof. By the definition of 𝑀 in (6.2.2), for any measurable set 𝐴 ⊂ 𝒮, for any 𝑠 ∈ 𝒮, 𝑀(𝑠,𝐴) is defined as

𝑀(𝑠,𝐴) =
∑︁
𝑛⩾0

𝛾𝑛𝑃𝑛(𝑠,𝐴). (6.2.6)

Since each 𝑃𝑛(𝑠, ·) is a probability distribution, 𝑃𝑛(𝑠,𝐴) ⩽ 1 so that this sum of non-negative terms is
bounded by 1

1−𝛾 , and therefore the sum converges. 𝑀(𝑠, ·) is a positive measure as a convergent sum of
positive measures (𝜎-additivity for 𝑀(𝑠, ·) follows from the dominated convergence theorem). Its total mass
is 𝑀(𝑠,𝒮) =

∑︀
𝑛⩾0 𝛾

𝑛𝑃 (𝑠,𝒮) =
∑︀
𝑛⩾0 𝛾

𝑛 = 1
1−𝛾 .

As a positive measure with finite mass, 𝑀(𝑠, ·) acts on bounded measurable functions, just like 𝑃 , via
(𝑀𝑓)(𝑠) =

∫︀
𝑓(𝑠′)𝑀(𝑠, d𝑠′). Since 𝑀 has mass 1

1−𝛾 for any 𝑠, this integral is bounded by 1
1−𝛾 sup 𝑓 , so that

sup𝑀𝑓 ⩽ 1
1−𝛾 sup 𝑓 for any function 𝑓 ∈ 𝐵(𝒮). Thus, 𝑀 is well-defined as an operator from 𝐵(𝒮) to 𝐵(𝒮).

As an operator, one has 𝛾𝑃𝑀 = 𝛾𝑃
∑︀
𝑛⩾0 𝛾

𝑛𝑃𝑛 =
∑︀
𝑛⩾1 𝛾

𝑛𝑃𝑛. Therefore, (Id−𝛾𝑃 )𝑀 =𝑀 − 𝛾𝑃𝑀 =∑︀
𝑛⩾0 𝛾

𝑛𝑃𝑛 −
∑︀
𝑛⩾1 𝛾

𝑛𝑃𝑛 = 𝛾0𝑃 0 = Id (the sums converge absolutely by the same boundedness argument
as before, thus justifying the infinite sum manipulations). This proves that 𝑀 is a right inverse of Id−𝛾𝑃 as
operators. The computation is identical for the left inverse; therefore, 𝑀 and Id−𝛾𝑃 are inverses as operators
on 𝐵(𝒮).

Finally, let 𝑅 be any (bounded, measurable) reward function. Since (Id−𝛾𝑃 )𝑀 = Id, one has
(Id−𝛾𝑃 )𝑀𝑅 = 𝑅 namely 𝑀𝑅 = 𝑅 + 𝛾𝑃𝑀𝑅. This proves that 𝑉 = 𝑀𝑅 satisfies the Bellman equa-
tion 𝑉 = 𝑅+ 𝛾𝑃𝑉 , and so 𝑀𝑅 is the value function of the Markov reward process.

If 𝜌0(d𝑠0) is an initial state distribution, we can define:

𝜈(d𝑠) =

∫︁
𝑠0

𝜌(d𝑠0)𝑀(𝑠0,d𝑠) (6.2.7)

The measure 𝜈(d𝑠) is the expected discounted occupancy measure for trajectories starting
from states sampled from 𝜌0(d𝑠0). It typically appears in the policy gradient formula (see
Section 1.5). Ensuring that this measure is well spread in the state space, by adding an entropy
regularizer on 𝜈(d𝑠) can help exploration and regularize policy optimization (Islam et al., 2019).

Successor state operator and paths in the Markov process 𝑀 can be interpreted as
paths in the Markov process: 𝑀(𝑠1,d𝑠2) represents the number of paths from 𝑠1 to 𝑠2, weighted
by their probability and discounted by their length. This will be relevant to compare the
algorithms in Chapters 7, 8 and 9. Indeed, in the finite-state case and using matrix notation,
𝑃𝑛𝑠𝑠′ is the probability to go from 𝑠 to 𝑠′ in 𝑛 steps; therefore

𝑀𝑠𝑠′ =
∑︁
𝑛⩾0

𝛾𝑛(𝑃𝑛)𝑠𝑠′ =
∑︁
𝑛⩾0

𝛾𝑛
∑︁

𝑠=𝑠0,𝑠1,...,𝑠𝑛−1,𝑠𝑛=𝑠′

𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛 (6.2.8)

=
∑︁

𝑝 path from 𝑠 to 𝑠′
𝛾|𝑝| P(𝑝) (6.2.9)
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where, if 𝑝 = (𝑠0, ..., 𝑠𝑛) is a path, P(𝑝) = 𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛 is its probability and |𝑝| = 𝑛 its
length. The same holds with integrals instead of sums in continuous spaces.

6.3 Representing and learning the successor state operator.

With continuous states, 𝑀 cannot be represented as a matrix. Instead, we will learn a function
of a pair of states. Namely, we will learn a parametric model of 𝑀 via its density with respect
to a data distribution 𝜌 over states:

𝑀(𝑠1,d𝑠2) ≈ 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) (6.3.1)

where 𝑚𝜃 is a function over pairs of states, depending smoothly on some parameter 𝜃. The
data distribution 𝜌 is unknown, but all algorithms below only require the ability to sample
states from 𝜌. Typically, 𝜌 can be a large buffer of states observed from past trajectories. From
this parametrization, we have:

𝑉 (𝑠1) = E𝑠2∼𝜌[𝑚𝜃(𝑠1, 𝑠2)𝑅(𝑠2)] (6.3.2)

Hence, if we learned a model 𝑚𝜃, we can estimate the value function with the equation above
by estimating this expectation. This is described in more details in Chapter 12.

An other possibility for parametrizing 𝑀 is via 𝑀(𝑠1,d𝑠2) ≈ 𝛿𝑠1(d𝑠2) + �̃�𝜃(𝑠1, 𝑠2)𝜌(d𝑠2)
where 𝛿𝑠1 is the Dirac measure at 𝑠1, and where �̃�𝜃 is a learned density. The motivation for the
second version is as follows. In continuous spaces, 𝑀 has a singular part, corresponding to the
immediate reward in 𝑉 , and to the term Id in the series for 𝑀 : for each 𝑠1, the measure 𝑀(𝑠1, ·)
comprises a Dirac mass at 𝑠1. In continuous spaces, this singular part cannot be represented as
�̃�(𝑠1, 𝑠2)𝜌(d𝑠2) for a smooth function �̃�. But since this singular part 𝛿𝑠1 is known, we can just
parametrize and learn the absolutely continuous part 𝑚(𝑠1, 𝑠2). Thus, the second version may
represent 𝑀 exactly (at least if 𝑃 is smooth), while in general the first version cannot. Still,
the first version may provide useful approximations.

In the following, we will only study algorithms for the first parametrization 𝑀𝜃(𝑠1,d𝑠2) =
𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) because this parametrization is simpler for some use cases such as policy
gradient methods. More details on the second parametrization with �̃� are explained in our
preprint (Blier et al., 2021). We will derive well-principled algorithms to learn 𝑚(𝑠1, 𝑠2) from
observations of the Markov process.

In this text, we define several algorithms for learning 𝑚𝜃: the extension of temporal difference
(TD) to successor states (Chapter 7); backward TD for successor states (Chapter 8); and second-
order-type methods (Chapter 9). The matrix-factorized forward-backward parametrization
𝑚𝜃(𝑠1, 𝑠2) = 𝐹𝜃(𝑠1)

⊤𝐵𝜃(𝑠2) has many additional properties and is treated in Chapter 11.
Chapter 12 gives more details about the ways to use 𝑀 to learn value functions and policies.

6.4 Norms on successor or transition operators

Both 𝑃 (𝑠,d𝑠′) and the successor state operator 𝑀(𝑠,d𝑠′) are measures on 𝑠′ that depend on 𝑠.
We will use the following norms on such objects: if 𝜌(d𝑠) is some reference probability measure
on 𝒮, and 𝑀1(𝑠,d𝑠

′) and 𝑀2(𝑠,d𝑠
′) are two such objects, we define

‖𝑀1 −𝑀2‖2𝜌 := E𝑠∼𝜌, 𝑠′∼𝜌 (𝑚1(𝑠, 𝑠
′)−𝑚2(𝑠, 𝑠

′))2 (6.4.1)

where 𝑚1(𝑠, 𝑠
′) :=𝑀1(𝑠,d𝑠

′)/𝜌(d𝑠′) is the density of 𝑀1 with respect to 𝜌 (if it exists; if not,
the norm is infinite), and likewise for 𝑀2.

In finite environments, we can see that this norm corresponds to the expected norm between
value functions if the reward is a sparse reward located in a random target state sampled from
𝜌. If 𝑠tar is a target state, we consider the sparse reward 𝑅𝑠tar(𝑠) = 1

𝜌(𝑠tar)
1𝑠=𝑠tar , which is the
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sparse reward located in 𝑠tar and scaled such that E𝑠∼𝜌 [𝑅𝑠tar(𝑠)] = 1. We know that the value
function corresponding to the reward 𝑅𝑠tar is 𝑉 𝜋𝑠tar(𝑠) = (𝑀𝜋 ·𝑅𝑠tar)(𝑠). Hence, if 𝑀1 and 𝑀2

are two estimates of 𝑀𝜋, we can use 𝑉 𝑠tar1 :=𝑀1 ·𝑅𝑠tar and 𝑉 𝑠tar2 :=𝑀2 ·𝑅𝑠tar as estimates of
the value function if the reward is 𝑅𝑠tar . In that case, we have:

‖𝑀1 −𝑀2‖2𝜌 = E𝑠1∼𝜌, 𝑠2∼𝜌
(︂
𝑀1(𝑠1, 𝑠2)

𝜌(𝑠2)
− 𝑀2(𝑠1, 𝑠2)

𝜌(𝑠2)

)︂2

= E𝑠1∼𝜌, 𝑠2∼𝜌 ((𝑀1 ·𝑅𝑠2)(𝑠1)− (𝑀2 ·𝑅𝑠2)(𝑠1))2

= E𝑠tar∼𝜌
[︀
‖𝑉 𝑠tar1 − 𝑉 𝑠tar2 ‖2𝜌

]︀
Hence the norm ‖.‖𝜌 on successor operators defined in equation (6.4.1) corresponds to a standard
quantity for value functions. We will use other similar 𝐿2 norms, which will always be specified.

We will also use the total variation norm

‖𝑀1 −𝑀2‖𝜌,TV := E𝑠∼𝜌 ‖𝑀1(𝑠, ·)−𝑀2(𝑠, ·)‖TV (6.4.2)

with ‖𝑝1 − 𝑝2‖TV := sup𝐴⊂𝒮 |𝑝1(𝐴)− 𝑝2(𝐴)| the usual total variation distance between two
measures.

Additionally, in Chapter 17, we will updates based on the generalized KL-divergence between
measures, and more generally on adaptive norms. While this is discussed in the context of
multi-goal RL, it can be applied to most of updates in the following chapters for the successor
states operator.

6.5 Observation model.

We assume access to observations from the Markov reward process, such as a fixed dataset of
stored transitions, or some sampled trajectories. Each observation is a triplet (𝑠, 𝑟, 𝑠′) with
𝑠′ ∼ 𝑃 (𝑠,d𝑠′) and 𝑟 ∼ ℛ(.|𝑠) the associated reward. Consecutive observations need not be
independent. We denote by 𝜌(d𝑠) be the distribution of states 𝑠 coming from the observations.
We cannot choose the states 𝑠: 𝜌 is unknown and we do not make any assumptions on it. For
instance, if we have access to trajectories from the process, obtained by some exploration policy,
then 𝜌 would be the law of states visited under that policy. If we just have a finite dataset of
transitions, 𝜌 would be the (unknown) law from which this dataset was sampled.

6.6 Some related work on successor states.

The successor state operator is linked to various existing objects under various names. It has
even been identified in the neurosciences (Stachenfeld et al., 2017) as an interesting model for
some functions of the hippocampus. In this section we briefly introduce some previous works
related to the successor states operator. Others will be mentionned throughout this thesis.

The fundamental matrix of a Markov Process For discount factor 𝛾 = 1, the successor
matrix 𝑀 is known as the fundamental matrix (Kemeny and Snell, 1960; Brémaud, 1999;
Grinstead and Snell, 1997) of a Markov process. If the process is absorbing, the matrix (Id−𝑃 )
is invertible and the fundamental matrix is defined as 𝑍 = (Id−𝑃 )−1 (Grinstead and Snell,
1997, Definition 11.3). In that case, the expected absorbing time 𝑡𝑠 starting from state 𝑠
is related to 𝑍 via 𝑡𝑠 = (𝑍 · 1)𝑠 =

∑︀
𝑠′ 𝑍𝑠𝑠′ (Grinstead and Snell, 1997, Theorem 11.6). If

the process is non-absorbing but an ergodic measure 𝜌, then the matrix (Id−𝑃 + 1 · 𝜌⊤) is
invertible (1 · 𝜌⊤ is the matrix with every rows equal to 𝜌), the fundamental matrix is defined
as 𝑍 := (Id−𝑃 + 1 · 𝜌⊤)−1. The fundamental matrix encodes many properties of the Markov
chain, such as the mean first passage 𝐴𝑖𝑗 (which is the expected time to reach 𝑗 from 𝑖) which
can be computed as: 𝐴𝑖𝑗 = 1

𝜌𝑗
(𝑍𝑗𝑗 − 𝑍𝑖𝑗) (Grinstead and Snell, 1997, Theorem 11.16).



116 CHAPTER 6. THE SUCCESSOR STATES OPERATOR

The successor states operator defined with 𝛾 < 1 as above and the fundamental matrix of a
markov process can be related as follows: If 𝑀𝛾 is the successor states operator defined with
𝛾 < 1, 𝑀𝛾 = (Id−𝛾𝑃 )−1, and 𝑍 is the fundamental matrix of the process (Id−𝑃 + 1 · 𝜌⊤)−1

which is independent of 𝛾, then we have:

𝑀𝛾 = 𝑍 +
1

1− 𝛾
1 · 𝜌⊤+𝑂𝛾→1(1− 𝛾) (6.6.1)

Hence, the dependency of the successor states operator with respect to 𝑔𝑎𝑚𝑚𝑎, when 𝛾 → 1, is
only via the rank one term 1

1−𝛾1 · 𝜌
⊤. If we consider the value function for 𝛾 < 1, we hence

have:

𝑉𝛾(𝑠) = (𝑀𝛾 ·𝑅)(𝑠) = (𝑍𝑅)(𝑠) +
𝐶

1− 𝛾
+𝑂𝛾→1(1− 𝛾) (6.6.2)

where 𝐶 = E𝑠′∼𝜌 [𝑅(𝑠′)]. Therefore, the value of state 𝑠, when 𝛾 → is approximately equal
to (𝑍𝑅)(𝑠) (independent of 𝑠) up to a constant independent of 𝑠 (thus useless for policy
improvement). While many algorithms described in this thesis could be applied to learn directly
𝑍 and not 𝑀𝛾 for 𝛾 < 1, we decided to work on 𝑀𝛾 to stay closer to RL practice.

Learning successor states by (forward) temporal difference is mentioned in (Dayan, 1993)
for the tabular case and with linear approximations; the parametric case has never been derived
as far as we know. Our second-order algorithms in Chapter 9 are based on an implicit process
estimation approach, which corresponds to the very specific tabular case of LSTD (Bradtke
and Barto, 1996).

Successor representations In a deep learning context, several recent works have used the
related successor representations (Kulkarni et al., 2016), e.g., for transfer (Barreto et al., 2017;
Borsa et al., 2018; Zhang et al., 2017b; Lehnert et al., 2017; Ma et al., 2018; Barreto et al., 2020),
hierarchical RL (Machado et al., 2018), exploration (Machado et al., 2019), or for off-policy
evaluation via Marginalized Importance Sampling (Fujimoto et al., 2021).

In Deep Successor Representation (Kulkarni et al., 2016), we consider a representation
function 𝜙 : 𝒮 ↦→ R𝑘. The objective is then to learn 𝑚(𝑠) the expected discounted representation
of future states, starting from a state 𝑠:

𝑚(𝑠) = E

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝜙(𝑠𝑡)|𝑠0 = 𝑠

⎤⎦ (6.6.3)

The successor representation is linked to the successor states operator as follows: we have:

𝑚(𝑠) = (𝑀 · 𝜙)(𝑠) =
∫︁
𝑠2

𝑀(𝑠,d𝑠2)𝜙(𝑠2) (6.6.4)

The main differences between the two objects are as follows: First the successor states operator
𝑀 does not depend on any representation function. Then, the successor states operator is a
measure, while the successor representation 𝑚 is an expected value. The former represents the
distribution of future states, while the latter represents the expected value of the representation
𝜙. Learning distributions of future outcomes in an environment, rather than an expected value,
is similar the the distributional RL principle (Bellemare et al., 2022).

The successor representation 𝑚 satisfies a Bellman equation, as:

𝑚(𝑠) = 𝜙(𝑠) + 𝛾E𝑠′∼𝑃 (.|𝑠) [𝑚(𝑠′)] (6.6.5)

and can be learned via temporal difference. Similarly, we will see in Chapter 7 that the successor
states operator satisfies a (forward) Bellman equation, and can be learned via temporal difference,
both in the tabular and parametric case. Additionally, the successor states operator 𝑀 is a
richer object than the successor states representation, and satisfies more Bellman equation:
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we will derive the Backward Bellman equation in Chapter 8, as well as the Bellman–Newton
equation in Chapter 9. These equations has no equivalent for the value function, or the successor
representation.

In Deep Successor Representation (Kulkarni et al., 2016), the representation 𝜙 is learned
together with its successor value 𝑚(𝑠). In that case, 𝜙 = 𝑚 = 0 is a fixed point of the method.
Hence, a reconstruction loss (such as pixel reconstruction) must be used to prevent collapse
during learning. On the other side, our learning methods for the successor states operator 𝑀
only depend of the observed transitions, and not of a reconstruction loss.

Multi-task and unsupervised RL. Successor states provide the value function for every
goal state: this is related to learning multiple RL tasks (Sutton et al., 2011; Schaul et al., 2015;
Jin et al., 2020; Pinto and Gupta, 2017) which performs joint 𝑉 - or 𝑄-learning for a set of goals.
In Part V of this thesis, we apply the mathematical tools derived for the successor operator to
the case of multi-goal RL. Some of the objects developed in this thesis were further extended to
a broader multi-task setting by (Touati and Ollivier, 2021).

More generally, successor state learning comes in the context of unsupervised RL, in which
relevant features of the environment are learned without the supervision of a reward signal.
Many works have suggested that unsupervised RL improves sample efficiency (Sun et al., 2019).
Notably, this includes model-based methods (François-Lavet et al., 2018). Contrary to the
latter, successor state learning does not require synthesizing accurate future states.





Chapter 7

TD Algorithms for Deep Successor
State Learning

In this chapter, we will define a Temporal Difference algorithm for the successor states operator.
As described in the previous chapter, we consider a model 𝑀𝜃(𝑠1,d𝑠2) := 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2)
parameterized by its density 𝑚𝜃(𝑠1, 𝑠2) with respect to a measure 𝜌. Our approach will be
similar to standard temporal difference for the value function, as described in Section 1.4.2:

First, we derive a Bellman equation for the successor states operator. This equation is called
the Forward Bellman equation. We use the name forward in order to highlight the difference
with the Backward Bellman equation introduced in Chapter 8. This is similar to the Bellman
equation on the value function 𝑉 introduced in Proposition 1.1, but for the successor states
operator.

Then, we derive a temporal difference algorithm with function approximators for the density
𝑚𝜃(𝑠1, 𝑠2) using the Forward Bellman Equation. This is similar to temporal difference with
function approximation described in Proposition 1.2.

We then discuss the convergence properties of this algorithm, how to extend it to standard
variants of TD (TD with a target network, TD(𝑛), TD for the action-value function 𝑄(𝑠, 𝑎)).

7.1 The Forward Bellman Equation

Theorem 7.1 (Bellman equation for successor states). The successor state operator 𝑀 is the
only operator which satisfies the Bellman equation

𝑀 = Id+𝛾𝑃𝑀 (7.1.1)

Proof. An operator 𝑀 ′ satisfies the left Bellman equation 𝑀 ′ = Id+𝛾𝑃𝑀 ′ if and only if 𝑀 ′ − 𝛾𝑃𝑀 ′ = Id,
or (Id−𝛾𝑃 )𝑀 ′ = Id, namely, 𝑀 ′ is a right inverse of Id−𝛾𝑃 . By Theorem 6.4, Id−𝛾𝑃 is invertible and its
inverse is 𝑀 . Therefore, the only right inverse of Id−𝛾𝑃 is 𝑀 .

This Bellman equation makes sense, as operators, on any state space, discrete or continuous.
In finite spaces, each column of the matrix 𝑀 contains the value function for a reward located
at a specific target state, and the Bellman equation for 𝑀 is just the collection of the standard
Bellman equations for every target state; the Id term is the reward for reaching state 𝑠 when
the target is 𝑠.

This Bellman operator on 𝑀 has the same contractivity properties as the usual Bellman
operator.

Proposition 7.2 (Contractivity of the Bellman operator on 𝑀). Equip the space of functions
𝐵(𝒮) with the sup norm ‖𝑓‖∞ := sup𝑠∈𝑆 |𝑓(𝑠)|. Equip the space of bounded linear operators
from 𝐵(𝒮) to 𝐵(𝒮) with the operator norm ‖𝑀‖op := sup𝑓∈𝐵(𝒮), 𝑓 ̸=0 ‖𝑀𝑓‖∞ / ‖𝑓‖∞.

Then the Bellman operator 𝑀 ↦→ Id+𝛾𝑃𝑀 is 𝛾-contracting for this norm.

119
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Consequently, for any learning rate 𝜂 ⩽ 1, iterated application of the Bellman operator
𝑀 ← (1− 𝜂)𝑀 + 𝜂(Id+𝛾𝑃𝑀) converges to the successor state operator.

Proof. By definition of the operator 𝑃 , for any function 𝑓 we have ‖𝑃𝑓‖∞ = sup𝑠
∫︀
𝑓(𝑠′)𝑃 (𝑠, d𝑠′) ⩽

sup𝑠′ 𝑓(𝑠
′) = ‖𝑓‖∞, so that 𝑃 is 1-contracting. Therefore, for any bounded operator 𝑀 and function 𝑓 ,

one has ‖𝑃𝑀𝑓‖∞ ⩽ ‖𝑀𝑓‖∞ ⩽ ‖𝑀‖op ‖𝑓‖∞, so that ‖𝑃𝑀‖op ⩽ ‖𝑀‖op for any 𝑀 . Therefore, given two
operators 𝑀 and 𝑀 ′, one has ‖(Id+𝛾𝑃𝑀)− (Id+𝛾𝑃𝑀 ′)‖op = 𝛾 ‖𝑃 (𝑀 −𝑀 ′)‖op ⩽ 𝛾 ‖𝑀 −𝑀 ′‖op.

Consider the sequence defined as 𝑀𝑡+1 := (1− 𝜂)𝑀𝑡 + 𝜂(Id+𝛾𝑃𝑀𝑡). We have:

‖𝑀𝑡+1 −𝑀‖op ⩽ (1− 𝜂)‖𝑀𝑡 −𝑀‖op + 𝜂‖(Id+𝛾𝑃𝑀𝑡)−𝑀‖op
= (1− 𝜂)‖𝑀𝑡 −𝑀‖op + 𝜂‖(Id+𝛾𝑃𝑀𝑡)(𝑀𝑡 −𝑀)‖op
⩽ (1− 𝜂 + 𝜂𝛾)‖𝑀𝑡 −𝑀‖op

By induction, 𝑀𝑡 converges to 𝑀 .

7.2 Forward TD for Successor States: Tabular Case

Given that the Bellman equation on 𝑀 is a collection of ordinary Bellman equations for every
target state, an obvious algorithm to learn 𝑀 in finite state spaces is to perform ordinary TD
in parallel for all these single-state rewards, as in (Dayan, 1993). Let 𝑠tar be some target state
and consider the reward 1𝑠tar . Upon observing a transition 𝑠→ 𝑠′, ordinary TD for this reward
updates 𝑉 by 𝑉𝑠 ← 𝑉𝑠+𝜂 𝛿𝑉𝑠, where 𝜂 is some learning rate and 𝛿𝑉𝑠 = 1𝑠=𝑠tar +𝛾𝑉 (𝑠′)−𝑉 (𝑠).
Performing TD in parallel for every column of 𝑀 with target state 𝑠tar is equivalent to the
following (Dayan, 1993).

Definition 7.3 (Tabular temporal difference for successor states). The TD algorithm for 𝑀 ,
in a finite state space, maintains 𝑀 as a matrix. Upon observing a transition 𝑠 → 𝑠′ in the
Markov process, 𝑀 is updated by 𝑀 ← 𝑀 + 𝜂 𝛿𝑀 where 𝜂 is a learning rate and 𝛿𝑀 has
entries

𝛿𝑀𝑠𝑠2 := 1𝑠=𝑠2 + 𝛾𝑀𝑠′𝑠2 −𝑀𝑠𝑠2 ∀𝑠2 (7.2.1)

Equivalently, the update on 𝑀 when observing a transition 𝑠→ 𝑠′ is updating all values of 𝑀
of line 𝑠, as:

∀𝑠2 : 𝑀𝑠𝑠2 ←𝑀𝑠𝑠2 + 𝜂 (𝛾𝑀𝑠′𝑠2 −𝑀𝑠𝑠2) (7.2.2)
𝑀𝑠𝑠 ←𝑀𝑠𝑠 + 𝜂 (7.2.3)

Equivalence between TD on 𝑉 and policy evaluation via TD on 𝑀 . In the tabular
case, if the reward is deterministic, learning 𝑉 via ordinary TD is equivalent to learning 𝑉 via
the matrix product 𝑉 =𝑀𝑅 with 𝑀 learned via tabular TD, as follows. This is formalized in
the following proposition:

Proposition 7.4. Consider a Markov reward process with deterministic reward 𝑅. Initialize
an estimate 𝑉 of 𝑉 to 0 and an estimate �̂� of 𝑀 to 0. Each time a transition 𝑠 → 𝑠′ with
reward 𝑟𝑠 = 𝑅𝑠 is observed, update 𝑉 via ordinary TD and �̂� via TD for successor states, with
learning rate 𝜂, namely

𝑉𝑠 ← 𝑉𝑠 + 𝜂
(︁
𝑟𝑠 + 𝛾𝑉𝑠′ − 𝑉𝑠

)︁
, (7.2.4)

�̂�𝑠𝑠2 ← �̂�𝑠𝑠2 + 𝜂
(︁
1𝑠=𝑠2 + 𝛾�̂�𝑠′𝑠2 − �̂�𝑠𝑠2

)︁
∀𝑠2. (7.2.5)

Then at every time step, 𝑉 = �̂�𝑅.

Proof. By induction on the time step. This is true at time 0 thanks to the initialization. If 𝑉 = �̂�𝑅 at one
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time step, then the update of �̂�𝑅 at the next time step is

(�̂�𝑅)𝑠 =
∑︁
𝑠2

�̂�𝑠𝑠2𝑅𝑠2

←
∑︁
𝑠2

(︁
�̂�𝑠𝑠2𝑅𝑠2 + 𝜂

(︁
1𝑠=𝑠2 + 𝛾�̂�𝑠′𝑠2 − �̂�𝑠𝑠2

)︁
𝑅𝑠2

)︁
= (�̂�𝑅)𝑠 + 𝜂

(︁
𝑅𝑠 + 𝛾(�̂�𝑅)𝑠′ − (�̂�𝑅)𝑠

)︁
which is the same update as 𝑉𝑠. The values at the other states are not updated. Therefore, if 𝑉 = �̂�𝑅 before
the update, this still holds after the update.

However, this equivalence does not hold with function approximation, which introduces
generalization between states. In continuous state spaces, if we consider a reward in a single state
𝑠tar, the probability to reach exactly that state is 0. Hence, applying parametric TD naively in
parallel for every target state would always provide reward 0 in continuous environments. The
parametric TD updates we present below are not equivalent to this naive TD: they have the
same expectation but avoid the zero-reward problem.

7.3 Forward TD for Successor States: Function Approxi-
mation

In continuous environments, it is not possible to store 𝑀 as a matrix. But we can maintain a
model 𝑚𝜃 of the density of 𝑀 , as explained in Section 6.3. As in usual parametric TD, we learn
𝜃 by defining an “ideal” update given by the Bellman equation, and update 𝜃 so that 𝑀 gets
closer to it. As introduced in Section 6.5, we assume we are observing transitions (𝑠, 𝑠′) such
that 𝑠 ∼ 𝜌(d𝑠) and 𝑠′ ∼ 𝑃 (𝑠′|𝑠), where 𝜌 is a reference measure. It can be a fixed dataset, or
the distributions of observed states along trajectories sampled via policy 𝜋 in the environment.
We do not assume we know 𝜌, but only we have access to samples from the distribution 𝜌.

Theorem 7.5 (TD for successor states with function approximation). Let 𝑀𝜃(𝑠1,d𝑠2) =
𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) be a current estimate of 𝑀(𝑠1,d𝑠2). Consider 𝑀 tar = Id+𝛾𝑃𝑀𝜃, a target
estimate for M defined via the Forward Bellman equation.

Let (𝑠, 𝑠′) be a sample of the environment such that 𝑠′ ∼ 𝑃 (𝑠′|𝑠) and 𝑠2 ∼ 𝜌 is sampled
independently, we define ̂︀𝛿𝜃F-TD(𝑠, 𝑠

′, 𝑠2) as:

̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2) := 𝜕𝜃𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)) (7.3.1)

Then ̂︀𝛿𝜃F-TD is an unbiased estimate of the Bellman error:

E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑠2∼𝜌

[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2)

]︁
= −1

2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2𝜌 (7.3.2)

where the norm ‖.‖𝜌 is introduced in (6.4.1). In particular, the true successor state operator 𝑀
is a fixed point of this update: if 𝑀𝜃 =𝑀 , then E

[︁ ̂︀𝛿𝜃F-TD

]︁
= 0.

The update ̂︀𝛿𝜃F-TD defined in Equation (7.3.1) allow us to define a algorithm learning the
successor state operator, similar to standard temporal difference algorithm for the value function
with function approximators: see Algorithm 8.

This algorithm uses a transition 𝑠→ 𝑠′ and one additional random state 𝑠2, independent
from 𝑠 and 𝑠′. The Bellman–Newton update (Section 9.5) will use two additional random states
𝑠1 and 𝑠2 (but no additional transition). The law of 𝑠2 is 𝜌, which means 𝑠2 is just another
state sampled from the distribution 𝜌. For instance, if the distribution 𝜌 is sampling from a
finite dataset of sampled trajectories (𝑠𝑡)𝑡⩾0, when observing a transition 𝑠𝑡 → 𝑠𝑡+1, additional
independent state samples can be obtained by using states 𝑠𝑡′ at times 𝑡′ independent from 𝑡
(such as a random 𝑡′ ⩽ 𝑡). This requires maintaining a replay buffer of observed states.
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Algorithm 8 Forward TD for successor states with function approximation.

Input: Policy 𝜋(𝑎|𝑠), randomly initialized model 𝑚𝜃(𝑠1, 𝑠2); TransitionMemory, maximum
number of time steps 𝑇
repeat

for 𝐾 trajectories do
Get an initial state 𝑠0 from the environment.
for 0 ⩽ 𝑡 ⩽ 𝑇 steps do do

Sample 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), execute 𝑎𝑡 and observe 𝑠𝑡+1

Store in the transition memory the transition TransitionMemory← (𝑠𝑡, 𝑠𝑡+1)
end for
for 𝐿 gradient steps do

Sample (𝑠, 𝑠′) ∼ TransitionMemory and (𝑠2,_) ∼∼ TransitionMemorŷ︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2) := 𝜕𝜃𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2))

Stochastic gradient step: 𝜃 ← 𝜃 + 𝜂 ̂︀𝛿𝜃F-TD.
end for

end for
until end of learning

Proof. In this proof, we freely go back and forth between 𝑀 or 𝑀tar as measure-valued functions, and 𝑀 or
𝑀tar as operators on bounded functions. Notably, the operator Id corresponds to the measure 𝛿𝑠1 (d𝑠2).

Here, there is a hidden mathematical subtlety with continuous states. Indeed, in that case, 𝑀𝜃 is
absolutely continuous with respect to 𝜌, while 𝑀tar is not, due to the Id term, as discussed in Section 6.3.
This makes the norm 𝐽(𝜃) = 1

2

⃦⃦
𝑀𝜃 −𝑀tar

⃦⃦2
𝜌

infinite (see its definition in (6.4.1)). However, the gradient
of this norm is actually still well-defined. To handle this rigorously, observe that the loss 𝐽(𝜃) is equal
to 1

2
‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀

tar⟩𝜌 + 1
2

⃦⃦
𝑀tar

⃦⃦2
𝜌

and has the same minima and the same gradients as the loss

𝐽 ′(𝜃) = 1
2
‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀

tar⟩𝜌 for a given 𝑀tar. Namely, 𝐽 and 𝐽 ′ differ by a constant in the finite case,
and by an “infinite constant” in the continuous case. We will work with the loss 𝐽 ′, which is finite even in the
continuous case.

Here ⟨𝑀1,𝑀2⟩𝜌 =
∫︀
𝑠,𝑠2

𝑀1(𝑠,d𝑠2)
𝜌(d𝑠2)

𝑀2(𝑠,d𝑠2)
𝜌(d𝑠2)

𝜌(d𝑠)𝜌(d𝑠2) is the dot product associated with the norm

(6.4.1). Since the integrand can be rewritten as 𝑀1(𝑠,d𝑠2)
𝜌(d𝑠2)

𝜌(d𝑠)𝑀2(𝑠,d𝑠2), it is well-defined as soon as at
least one of 𝑀1 or 𝑀2 is absolutely continuous with respect to 𝜌. Namely,

⟨𝑀1,𝑀2⟩𝜌 =

∫︁
𝑠,𝑠2

𝑀1(𝑠, d𝑠2)

𝜌(d𝑠2)
𝜌(d𝑠)𝑀2(𝑠, d𝑠2). (7.3.3)

Let us compute 𝐽 ′(𝜃) = 1
2
‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀

tar⟩𝜌. We define 𝜃 such that 𝜃 has the same value than 𝜃

(𝜃 = 𝜃) but is not differentiated through 𝜃. By definition of 𝑀tar = Id+𝛾𝑃𝑀𝜃, and by definition of the action
of the operator 𝑃 , we have

𝑀tar(𝑠, d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾

∫︁
𝑠′
𝑃 (𝑠, d𝑠′)𝑀𝜃(𝑠

′, d𝑠2) (7.3.4)

= 𝛿𝑠(d𝑠2) + 𝛾 E𝑠′∼𝑃 (𝑠,d𝑠′)[𝑚𝜃(𝑠
′, 𝑠2)𝜌(d𝑠2)] (7.3.5)

by definition of the model 𝑀𝜃(𝑠1, d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2). Therefore, by (7.3.3),

⟨𝑀𝜃,𝑀
tar⟩𝜌 =

∫︁
𝑠,𝑠2

𝑚𝜃(𝑠, 𝑠2) 𝜌(d𝑠)𝑀
tar(𝑠,d𝑠2)

=

∫︁
𝑠
𝑚𝜃(𝑠, 𝑠) 𝜌(d𝑠) + 𝛾

∫︁
𝑠, 𝑠′, 𝑠2

𝑚𝜃(𝑠, 𝑠2)𝑚𝜃(𝑠
′, 𝑠2) 𝜌(d𝑠)𝑃 (𝑠, d𝑠′) 𝜌(d𝑠2)

thanks to (7.3.5). Next, since 𝑀𝜃(𝑠, d𝑠2) = 𝑚𝜃(𝑠, 𝑠2)𝜌(d𝑠2), the definition of the norm (6.4.1) yields

1

2
‖𝑀𝜃‖2𝜌 =

1

2

∫︁
𝑠,𝑠2

𝑚𝜃(𝑠, 𝑠2)
2 𝜌(d𝑠) 𝜌(d𝑠2). (7.3.6)

Collecting, and rewriting the integrals as expectations, we find

𝐽 ′(𝜃) =
1

2
E𝑠∼𝜌, 𝑠2∼𝜌

[︀
𝑚𝜃(𝑠, 𝑠2)

2 −𝑚𝜃(𝑠, 𝑠)
]︀
− 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌[𝑚𝜃(𝑠, 𝑠2)𝑚𝜃(𝑠

′, 𝑠2)] (7.3.7)
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hence

𝜕𝜃𝐽
′(𝜃) =

= E𝑠∼𝜌, 𝑠2∼𝜌 [𝜕𝑚𝜃(𝑠, 𝑠2)𝑚𝜃(𝑠, 𝑠2)− 𝜕𝑚𝜃(𝑠, 𝑠)]− 𝛾E𝑠∼𝜌, 𝑠′∼𝑃 (𝑠,d𝑠′), 𝑠2∼𝜌[𝜕𝑚𝜃(𝑠, 𝑠2)𝑚𝜃(𝑠
′, 𝑠2)]

= E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑠2∼𝜌

[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠′, 𝑠2)
]︁

(7.3.8)

7.4 Toy experiments in continuous environments

In this section, we check in simple environments that the parametric TD algorithm (Algorithm 8)
introduced for 𝑀 manage to learn 𝑀 , parameterized by the two-state function 𝑚𝜃(𝑠1, 𝑠2). The
experiments details are in Appendix 7.A. First, we use a discrete maze (Figure 7.1a), treated in
a parametric way: each state is represented by its continuous 2D coordinates (𝑥, 𝑦) encoding
its position in the maze. These coordinates are fed to a multilayer perceptron that is trained
to learn the successor state operator 𝑚𝜃. We sample transitions 𝑠→ 𝑠′ from 64 simultaneous
trajectories, together with 256 random states 𝑠2 at each step.

(a) The learned successor states in a parametric
maze, for a random policy. The model 𝑚𝜃(𝑠1, 𝑠2)
is a MLP taking as input the (𝑥, 𝑦) 2D coordinates.

(b) High dimensional torus: 𝑠 ↦→ 𝑚𝜃(𝑠, 𝑠target)
evaluated on 1 dimensional lines going through
the target state 𝑠target = 0.

Figure 7.1: Qualitative results, showing the learned successor states estimates 𝑚𝜃(𝑠1, 𝑠2) in toy
continuous environments.

Then, we consider a scenario where the reward is located at a known state, but too sparse
to ever be visited. This is obtained simply by increasing dimension, so that the probability to
randomly visit a state is small. More precisely, we consider the 8D torus [0; 1]8 (Figure 7.1b).
The policy is a Gaussian random walk with 𝜎 = .05. , and we let the reward be nonzero
whenever the agent is at distance less than 𝜀 = .1 from some target state 𝑠tar.

In practice, an agent will almost never observe the reward. Indeed, the probability to hit
the reward with the random policy is ≈ 1/25, 000, 000: no reward is ever collected, thus a TD
method has no signal and learns nothing. With successor states, the value function can be
estimated as 𝑚(𝑠, 𝑠tar) (assuming, in this scenario, that the target state 𝑠tar is known, namely,
its representation, as used for the input to the MLP, is known). The training trajectories never
get very close to the target state, yet successor state learning correctly infers the value function
for this target state, by generalization from how other states have been reached. We can observe
this by selecting a target state 𝑠target, and plotting 𝑚𝜃(𝑠, 𝑠tar) for 𝑠 on random lines going
through 𝑠tar (Figure 7.1b). Qualitatively, after 100, 000 steps in the environment we learned
the right shape of the successor state.

7.5 Convergence properties for TD on successor states

In the tabular case, we proved that the Forward TD update on 𝑀 is equivalent to the forward
TD update on the value function, simultaneously for every reward 𝑅𝑠tar(𝑠) = 1𝑠tar=𝑠 located on



124 CHAPTER 7. TD ALGORITHMS FOR DEEP SUCCESSOR STATE LEARNING

a target state. Hence, theoretical guarantees on the convergence of TD for the value function can
be transferred to a similar guarantee on 𝑀 . We briefly present two such results: convergence of
tabular TD and convergence of TD on-policy for any parametrization if the process is reversible.
In each case, we refer to the original works for additional technical conditions:

Tabular case In the tabular case, forward TD on 𝑀 (Definition 7.3) converges, with pairs
(𝑠, 𝑠2) sampled at each step from essentially any selection scheme (stochastic or deterministic)
that ensures every pair is selected infinitely often, and with suitable learning rates. Indeed, TD on
M is equivalent to learning simultaneously the value function for every reward 𝑅𝑠tar(𝑠) = 1𝑠tar=𝑠,
and every of these value function estimation via temporal difference converge in the tabular
case, if every pair is selected infinitely often, and with suitable learning rates (Tsitsiklis, 1994).

Reversible processes For TD on the value function with arbitrary parametric families 𝑉𝜃,
convergence is known assuming that the Markov operator 𝑃 is reversible, namely, that 𝜌 is its
steady-state distribution and further satisfies the detailed balance condition 𝜌(d𝑠)𝑃 (d𝑠′|𝑠) =
𝜌(d𝑠′)𝑃 (d𝑠|𝑠′), in other words, steady-state flows from state 𝑠 to 𝑠′ and 𝑠′ to 𝑠 are equal. Then,
parametric TD is a stochastic gradient descent of a global loss between the approximate and
true value function (Ollivier, 2018). This result extends to MDPs which are “reversible enough”
(Brandfonbrener and Bruna, 2019).

We can now extend this result to the successor states operator. Define the loss function:

ℓ(𝜃) := (1− 𝛾) ‖𝑀𝜃 −𝑀𝜋‖2𝜌 + 𝛾 ‖𝑀𝜃 −𝑀𝜋‖2Dir (7.5.1)

where 𝑀𝜋 is the true successor states operator, and ‖.‖2Dir is the Dirichlet norm, defined
as follows: if 𝑀(𝑠1,d𝑠2) is absolutely continuous with respect to 𝜌 (with 𝑀(𝑠1,d𝑠2) =
𝑚(𝑠1, 𝑠2)𝜌(d𝑠2)) is

‖𝑀(𝑠1,d𝑠2)‖2Dir :=

∫︁
𝑠,𝑠′,𝑠2

𝜌(d𝑠)𝑃 (d𝑠′|𝑠)𝜌(d𝑠2)(𝑚(𝑠′, 𝑠2)−𝑚(𝑠, 𝑠2))
2. (7.5.2)

and is infinite if 𝑀 is not absolutely continuous with respect to 𝜌.
In continuous environments, the loss function ℓ(𝜃) is infinite, because 𝑀𝜋 is not absolutely

continuous with respect to 𝜌. Still, as already explained in the proof of Theorem 7.5, its
gradients are well-defined, and this issue can be handled formally. We will not give details here
and refer to the proof of Theorem 7.5.

Applying the result of (Ollivier, 2018) to successor states via the state-goal process yields
the following: The parametric TD step for 𝑀 (Theorem 7.5) is equal to the gradient of this
loss, − 1

2𝜕𝜃ℓ(𝜃). This is a global loss between the parametric model and the true value 𝑀𝜋,
contrary to the loss in Theorem 7.5 which uses a loss with respect to the right-hand-side of the
Bellman equation, which depends on the current estimate. Thus, in the reversible case with 𝜌
the stationary distribution, parametric TD for 𝑀 converges to a local minimum of the global
loss (7.5.1), under the general conditions for convergence of stochastic gradient descent.

7.6 TD with a target network

A standard technique in practice for policy evaluation is to maintain two models for the value
function: the current network 𝑉𝜃 and a target network 𝑉𝜃. Typically, 𝜃 can be obtained from
previous values of 𝜃 via Polyak averaging (Lee and He, 2019). The same technique can be used
for learning the successor state operator. Theorem 7.5 can be adapted as follow for the use of
target networks:

Theorem 7.6 (TD with target network). Let 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) be a current
estimate of 𝑀(𝑠1,d𝑠2), and 𝜃 be a target parameter. Consider 𝑀 tar = Id+𝛾𝑃𝑀𝜃, a target
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estimate for M defined via the Forward Bellman equation, with value 𝜃. We define for every
(𝑠, 𝑠′, 𝑠2):

̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2) := 𝜕𝜃𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)) (7.6.1)

Then ̂︀𝛿𝜃F-TD is an unbiased estimate of the Bellman error:

E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑠2∼𝜌

[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2)

]︁
= −1

2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2𝜌. (7.6.2)

The proof is identical to that of Theorem 7.5, but with 𝜃 instead of 𝜃 for 𝑀 tar.

7.7 TD(𝑛) on the Successor States

A multistep, horizon-ℎ version of TD on 𝑀 can be defined by iterating the Bellman equation,
which yields 𝑀 = Id+𝛾𝑃 + · · ·+ 𝛾ℎ−1𝑃ℎ−1 + 𝛾ℎ𝑃ℎ𝑀 . This requires being able to observe ℎ
consecutive transitions from the process. The corresponding parametric update is as follows,
and is equivalent to standard TD for ℎ = 1:

Theorem 7.7 (Multi-step TD for successor states with function approximation). Let 𝑀𝜃(𝑠1,d𝑠2) =
𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) be a current estimate of 𝑀(𝑠1,d𝑠2). For ℎ ⩾ 1, define a target update of 𝑀
via the horizon-ℎ Bellman equation,

𝑀 tar := Id+𝛾𝑃 + · · ·+ 𝛾ℎ−1𝑃ℎ−1 + 𝛾ℎ𝑃ℎ𝑀𝜃. (7.7.1)

Let (𝑠0, 𝑠1, ..., 𝑠ℎ, 𝑠tar) be a sample of the environment such that 𝑠𝑡+1 ∼ 𝑃 (d𝑠|𝑠𝑡) and 𝑠tar ∼ 𝜌
is sampled independently, we define ̂︀𝛿𝜃F-TD(𝑛)(𝑠0, 𝑠1, ..., 𝑠ℎ, 𝑠tar) as:

̂︀𝛿𝜃F-TD(𝑛)(𝑠0, 𝑠1, ..., 𝑠ℎ, 𝑠tar) :=

ℎ−1∑︁
𝑡=0

𝛾𝑡𝜕𝑚𝜃(𝑠0, 𝑠𝑡)+

+ 𝜕𝜃𝑚𝜃(𝑠0, 𝑠tar)
(︀
𝛾ℎ𝑚𝜃(𝑠ℎ, 𝑠tar)−𝑚𝜃(𝑠0, 𝑠tar)

)︀
(7.7.2)

Then ̂︀𝛿𝜃F-TD(𝑛) is an unbiased estimate of the n-step Bellman error:

E(𝑠0,𝑠1,...,𝑠ℎ,𝑠tar)

[︁ ̂︀𝛿𝜃F-TD(𝑛)(𝑠0, 𝑠1, ..., 𝑠ℎ, 𝑠tar)
]︁
= −𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2𝜌

Similarly to standard TD, we can define the corresponding tabular update, to get more
intuition. The corresponding F-TD(𝑛) update for a tabular model 𝑀𝑠1𝑠2 when observing a
sub-trajectory (𝑠0, 𝑠1, ..., 𝑠ℎ) is:

∀𝑠tar : 𝑀𝑠0𝑠tar ←𝑀𝑠0𝑠tar + 𝜂
(︀
𝛾ℎ𝑀𝑠ℎ𝑠tar −𝑀𝑠0𝑠tar

)︀
(7.7.3)

𝑀𝑠0𝑠0 ←𝑀𝑠0𝑠0 + 𝜂

𝑀𝑠0𝑠1 ←𝑀𝑠0𝑠1 + 𝛾𝜂

...

𝑀𝑠0𝑠ℎ−1
←𝑀𝑠0𝑠ℎ−1

+ 𝛾ℎ−1𝜂

The intuition is the following: from a sub-trajectory (𝑠0, 𝑠1, ..., 𝑠ℎ), we can increase the value
functions estimates corresponding to sparse rewards in target states 𝑠0, ..., 𝑠ℎ−1, and propagate
the reward for any additional target state 𝑠tar from 𝑠ℎ to 𝑠tar.

Proof. The proof is very similar to the proof of Theorem 7.5. We define 𝐽 ′(𝜃) = 1
2
‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀

tar⟩. We
have:

𝐽 ′(𝜃) =
1

2

∫︁
𝑠0,𝑠tar

𝜌(d𝑠0)𝜌(d𝑠tar)𝑚𝜃(𝑠0, 𝑠tar)
2 −

∫︁
𝑠0,𝑠tar

𝜌(d𝑠0)𝑚𝜃(𝑠0, 𝑠tar)𝑀
tar(𝑠0, 𝑠tar) (7.7.4)
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The second part can be written as:∫︁
𝑠0,𝑠tar

𝜌(d𝑠0)𝑚𝜃(𝑠0, 𝑠tar)𝑀
tar(𝑠0, 𝑠tar) =

=

∫︁
𝑠0,𝑠tar

𝜌(d𝑠0)

(︃
ℎ−1∑︁
𝑡=0

𝛾𝑡𝑃 𝑡(𝑠0, d𝑠tar) + 𝛾ℎ𝑃ℎ𝑀𝜃(𝑠0, d𝑠tar)

)︃
𝑚𝜃(𝑠0, 𝑠tar)

=

∫︁
𝑠0,𝑠1,...,𝑠ℎ,𝑠tar

𝜌(d𝑠0)𝑃 (d𝑠1|𝑠0)...𝑃 (d𝑠ℎ|𝑠ℎ−1)𝜌(d𝑠tar)

(︃
ℎ−1∑︁
𝑡=0

𝛾𝑡𝑚𝜃(𝑠0, 𝑠𝑡) + 𝛾ℎ𝑚𝜃(𝑠ℎ, 𝑠tar)𝑚𝜃(𝑠0, 𝑠tar)

)︃

where 𝜃 = 𝜃 but 𝜃 is not differentiated via 𝜕𝜃. Therefore:

−𝜕𝜃𝐽 ′(𝜃) =

∫︁
𝑠0,𝑠1,...,𝑠ℎ,𝑠tar

𝜌(d𝑠0)𝑃 (d𝑠1|𝑠0)...𝑃 (d𝑠ℎ|𝑠ℎ−1)𝜌(d𝑠tar)×

×
(︃
ℎ−1∑︁
𝑡=0

𝛾𝑡𝑚𝜃(𝑠0, 𝑠𝑡) + 𝜕𝑚𝜃(𝑠0, 𝑠tar)
(︁
𝛾ℎ𝑚𝜃(𝑠ℎ, 𝑠tar)−𝑚𝜃(𝑠0, 𝑠tar)

)︁)︃

7.8 Having Targets on Features of the State

Learning 𝑀 is particularly suitable when the reward is located at a single known goal state 𝑔.
If the reward is exactly the Dirac reward 𝛿𝑔 located in 𝑔, the value function 𝑉 (𝑠) is exactly to
𝑚(𝑠, 𝑔) (up to a multiplicative constant independent of the state). If the reward is located in a
neighborhood of the target state 𝑔 (𝑅(𝑠) = 1‖𝑠−𝑔‖⩽𝜀 with 𝜀 > 0), we can prove that 𝑚(𝑠, 𝑔)
approximates the value function when 𝜀→ 0 (see Chapter 13 for more details, in the multi-goal
setting).

Another scenario is to have a target value for some features of the state, not necessarily the
whole state itself: namely, the reward is nonzero when some known feature 𝜙(𝑠) of state 𝑠 is
equal to some known goal 𝑔. Consider for example the FetchPush environment in multi-goal
RL (OpenAI, 2018a): a robot learns to push a cube towards a target goal. The state space
contains not only the cube position, but also every angles and velocity for the robot, but the
reward only depends on a part of the state 𝜙(𝑠) which contains the position of the cube. Then,
the reward is non-zero only if 𝜙(𝑠) ≈ 𝑔.

In that case, it is convenient to learn a smaller object than 𝑀 , from which the value function
can be read directly. This is also useful if the reward is known to depend only on 𝜙(𝑠).

Definition 7.8. Let 𝜙 : 𝑆 → R𝑘 be any measurable map. The successor feature operator 𝑀𝜙

is defined as follows: for each state 𝑠1, 𝑀𝜙(𝑠1,d𝑔) is a measure on R𝑘 equal to the pushforward
of 𝑀(𝑠1,d𝑠2) by the map 𝑠2 ↦→ 𝑔 = 𝜙(𝑠2).

The successor feature operator 𝑀𝜙 in two cases in this thesis will allow us to derive some
results in two important cases: in Section 7.9 to derive an TD algorithm for the state-action
successor operator, and in Chapter 16 to derive a policy evaluation algorithm in the multi-goal
setting.

This operator is different from successor representations: here we keep track of the whole
future distribution of values of 𝜙(𝑠′) for every starting point 𝑠. On the contrary, successor
representations learns the expected future value of 𝜙(𝑠′) for every starting point 𝑠.

𝑀𝜙 can be used to compute the value function of any reward that depends only on 𝜙(𝑠).

Proposition 7.9. Assume that the reward function at state 𝑠 is equal to 𝑅(𝜙(𝑠)), namely, it
depends only on 𝜙. Let 𝜏 be any probability distribution on features in R𝑘. Assume that 𝑀𝜙

is parameterized as 𝑀𝜙(𝑠,d𝑔) = 𝑚𝜙(𝑠, 𝑔)𝜏(d𝑔). Then the value function of a state 𝑠 for this
reward is

𝑉 (𝑠) = E𝑔∼𝜏 [𝑚𝜙(𝑠, 𝑔)𝑅(𝑔)]. (7.8.1)

In particular, if the reward is nonzero exactly when the feature 𝜙(𝑠) is equal to some target
value 𝑔, then the value function is proportional to 𝑚𝜙(𝑠, 𝑔).

This is useful only if an algorithm to learn 𝑚𝜙 is available. Forward TD can be defined on
𝑀𝜙, based on the following Bellman equation.
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Proof. Assume that the reward function at a state 𝑠 is equal to 𝑅(𝜙(𝑠)). By definition of the successor
state operator 𝑀 , the corresponding value function satisfies 𝑉 (𝑠) =

∫︀
𝑠′ 𝑅(𝜙(𝑠

′))𝑀(𝑠, d𝑠′). By definition of
the pushforward measure, the latter is equal to

∫︀
𝑔 𝑅(𝑔)𝑀𝜙(𝑠, d𝑔). If 𝑀𝜙(𝑠, d𝑔) is equal to 𝑚𝜙(𝑠, 𝑔)𝜏(d𝑔) for

some probability distribution 𝜏 , this rewrites as E𝑔∼𝜏𝑚𝜙(𝑠, 𝑔)𝑅(𝑔). This proves Proposition 7.9.

Proposition 7.10. 𝑀𝜙 satisfies the Bellman equation

𝑀𝜙(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (𝑠,d𝑠′)𝑀
𝜙(𝑠′,d𝑔). (7.8.2)

Proof. We have the Bellman equation on 𝑀 :

𝑀(𝑠, d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠)𝑀(𝑠′, d𝑠2)

Then take the pushforward by 𝜙 on both sides. Because the pushforward operator is linear, we have:

𝜙*E𝑠′∼𝑃 (d𝑠′|𝑠)𝑀(𝑠′, d𝑠2) = E𝑠′∼𝑃 (d𝑠′|𝑠)𝜙*𝑀(𝑠′,d𝑠2)

= E𝑠′∼𝑃 (d𝑠′|𝑠)𝑀
𝜙(𝑠′,d𝑠2)

Moreover, the pushforward of the Dirac mass at 𝑠 is the Dirac mass at 𝜙(𝑠). This provides the Bellman
equation for 𝑀𝜙.

We can now derive the forward TD algorithm with features of the state. We define the
norm ‖.‖𝜌⊗𝜏 similarly to the norm ‖.‖𝜌 measures. For two feature measures 𝑀𝜙

1 (𝑠,d𝑔) and
𝑀𝜙

2 (𝑠,d𝑔), we define

‖𝑀𝜙
1 −𝑀

𝜙
2 ‖

2
𝜌⊗𝜏 := E𝑠∼𝜌, 𝑔∼𝜏 (𝑚𝜙

1 (𝑠, 𝑔)−𝑚
𝜙
2 (𝑠, 𝑔))

2 (7.8.3)

where 𝑚𝜙
1 (𝑠, 𝑠

′) :=𝑀𝜙
1 (𝑠,d𝑠

′)/𝜌(d𝑠′) is the density of 𝑀𝜙
1 with respect to 𝜏 (if it exists; if not,

the norm is infinite), and likewise for 𝑀𝜙
2 .

Theorem 7.11 (TD for successor states on feature space). Let 𝜏 := 𝜙*𝜌, the push-forward
measure of 𝜌 via 𝜙 on the feature space R𝑘. Let 𝑀𝜙

𝜃 (𝑠1,d𝑔) = 𝑚𝜙
𝜃 (𝑠1, 𝑔)𝜏(d𝑔) be a current

estimate of 𝑀𝜙(𝑠1,d𝑔). Consider (𝑀𝜙)tar = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (𝑠,d𝑠′)𝑀
𝜙
𝜃 (𝑠

′,d𝑔), a target
estimate for M defined via the Forward Bellman equation on feature space.

Let (𝑠, 𝑠′) be a sample of the environment such that 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) and 𝑔 ∼ 𝜏 is sampled
independently, we define ̂︀𝛿𝜃F-TD(𝑠, 𝑠

′, 𝑔) as:̂︀𝛿𝜃F-TD-𝜙(𝑠, 𝑠
′, 𝑔) := 𝜕𝜃𝑚

𝜙
𝜃 (𝑠, 𝜙(𝑠)) + 𝜕𝜃𝑚

𝜙
𝜃 (𝑠, 𝑔) (𝛾𝑚

𝜙
𝜃 (𝑠

′, 𝑔)−𝑚𝜙
𝜃 (𝑠, 𝑔)) (7.8.4)

Then ̂︀𝛿𝜃F-TD-𝜙 is an unbiased estimate of the Bellman error:

E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑔∼𝜏

[︁ ̂︀𝛿𝜃F-TD-𝜙(𝑠, 𝑠
′, 𝑔)

]︁
= −1

2
𝜕𝜃‖𝑀𝜙

𝜃 − (𝑀𝜙)tar‖2𝜌⊗𝜏 (7.8.5)

In particular, the true successor state operator on feature space 𝑀𝜙 is a fixed point of this
update: if 𝑀𝜙

𝜃 =𝑀𝜙, then E
[︁ ̂︀𝛿𝜃F-TD

]︁
= 0.

Proof. We define the model of the successor state (on the state space, not on feature space) as

𝑀𝜃(𝑠1, d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) (7.8.6)

with
𝑚𝜃(𝑠1, 𝑠2) = 𝑚𝜙𝜃 (𝑠1, 𝜙(𝑠2)) (7.8.7)

For this proof, we first show that the update (7.8.4) is exactly the Forward-TD update (7.3.1) defined in
Theorem 7.5, with model (7.8.7). Indeed, update (7.3.1) with model (7.8.7) when observing (𝑠, 𝑠′, 𝑠2) is:̂︀𝛿𝜃F-TD(𝑠, 𝑠′, 𝑠2) = (7.8.8)

= 𝜕𝜃𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2)
(︀
𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)
)︀

(7.8.9)

= 𝜕𝜃𝑚
𝜙
𝜃 (𝑠, 𝜙(𝑠)) + 𝜕𝜃𝑚

𝜙
𝜃 (𝑠, 𝜙(𝑠2))

(︀
𝛾𝑚𝜙𝜃 (𝑠

′, 𝜙(𝑠2))−𝑚𝜙𝜃 (𝑠, 𝜙(𝑠2))
)︀

(7.8.10)

= ̂︀𝛿𝜃F-TD-𝜙(𝑠, 𝑠
′, 𝜙(𝑠2)) (7.8.11)

Since 𝜏 = 𝜙*𝜌, we have:

E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑔∼𝜏

[︁ ̂︀𝛿𝜃F-TD-𝜙(𝑠, 𝑠
′, 𝑔)

]︁
= E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑠2∼𝜌

[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠′, 𝜙(𝑠2))
]︁

= 𝜕𝜃‖𝑀𝜃 −𝑀tar‖2𝜌
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where 𝑀tar = Id+𝛾𝑃𝑀𝜃.
We now show that ‖𝑀𝜃 −𝑀tar‖2𝜌 = ‖𝑀𝜙

𝜃 − (𝑀𝜙)tar‖2𝜌⊗𝜏 . More generally, we show that if 𝑀𝜃(𝑠1,d𝑠2) =

𝑚𝜙(𝑠1, 𝜙(𝑠2))𝜌(d𝑠2) and 𝑀 ′(𝑠1, d𝑠2) is any operator on 𝐵(𝒮), we have:

⟨𝑀𝜃,𝑀
′⟩𝜌 =

∫︁
𝑠1,𝑠2

𝜌(d𝑠1)𝑚
𝜙
𝜃 (𝑠1, 𝜙(𝑠2))𝑀

′(𝑠1, d𝑠2)

=

∫︁
𝑠1,𝑔

𝜌(d𝑠1)𝑚
𝜙
𝜃 (𝑠1, 𝑔)𝜙*𝑀

′(𝑠1, d𝑔)

= ⟨𝑀𝜙
𝜃 , 𝜙*𝑀

′⟩𝜌⊗𝜏

Therefore

‖𝑀𝜃 −𝑀tar‖2𝜌 = ‖𝑀𝜙
𝜃 − 𝜙*𝑀

tar‖2𝜌⊗𝜏 (7.8.12)

= ‖𝑀𝜙
𝜃 − (𝑀𝜙)tar‖2𝜌⊗𝜏 (7.8.13)

This concludes the proof

Once more, the term 𝜕𝜃𝑚
𝜙
𝜃 (𝑠, 𝜙(𝑠)) makes every transition informative: when visiting state

𝑠, we increase the probability to reach the goal 𝜙(𝑠).

7.9 Learning the state-action successor operator 𝑄(𝑠, 𝑎, d𝑠2)
via Forward TD

Our results on estimating the 𝑀(𝑠1,d𝑠2) can be transferred to 𝑄(𝑠1, 𝑎,d𝑠2) , the expected
discounted time spent in d𝑠2 if starting from 𝑠 and doing action 𝑎. In this section we formally
define the state-action successor operator 𝑄(𝑠, 𝑎,d𝑠2) and extend the Forward TD algorithm
developed for the successor states operator to this object. Our approach is to define the
augmented state-action MRP, in which the state space is 𝒮 := 𝒮 × 𝒜 and the transition
operator 𝑃 (d𝑠′,d𝑎′|𝑠, 𝑎) = 𝑃 (d𝑠′|𝑠, 𝑎)𝜋(d𝑎′|𝑠), then directly apply Theorems 7.10 and 7.11 to
that extended environment to define 𝑄(𝑠1, 𝑎,d𝑠2) and its TD algorithm.

7.9.1 The augmented state-action MRP
Let ℳ be a MDP with state space 𝒮, action state 𝒜, transition operator 𝑃 (d𝑠′|𝑠, 𝑎), and
𝜋(d𝑎|𝑠) a policy. We consider the augmented MRP with state space 𝒮 := 𝒮 ×𝒜, and transition
operator 𝑃 (d𝑠′,d𝑎′|𝑠, 𝑎) = 𝑃 (d𝑠′|𝑠, 𝑎)𝜋(d𝑎′|𝑠), and �̃�(𝑠, 𝑎) = 𝑅(𝑠). The following proposition
shows that the augmented MRP viewpoint is useful to go from results on the value function to
results on the action-value function:

Proposition 7.12. Let 𝑄(𝑠, 𝑎) be the action-value function of the MDP ℳ with policy 𝜋. Let
𝑉 be the value function of the augmented MRP ℳ̃. Then we have:

𝑄(𝑠, 𝑎) = 𝑉 ((𝑠, 𝑎)) (7.9.1)

Proof. Here, we denote 𝑃𝜋(d𝑠′|𝑠) =
∫︀
𝑎 𝜋(d𝑎|𝑠)𝑃 (d𝑠′|𝑠, 𝑎) (usually noted 𝑃 in this document). We have, for

𝑡 ⩾ 1:

𝑃 𝑡(d𝑠𝑡, d𝑎𝑡|𝑠0, 𝑎0) =
∫︁
𝑠1,𝑎1,...,𝑠𝑡−1,𝑎𝑡−1

𝑃 (d𝑠1, d𝑎1|𝑠0, 𝑎0)...𝑃 (d𝑠𝑡, d𝑎𝑡|𝑠𝑡−1, 𝑎𝑡−1)

=

∫︁
𝑠1,𝑎1,...,𝑠𝑡−1,𝑎𝑡−1

𝑃 (d𝑠1|𝑠0, 𝑎0)𝜋(d𝑎1|𝑠1)...𝑃 (d𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)𝜋(d𝑎𝑡|𝑠𝑡)

=

∫︁
𝑠1

𝑃 (d𝑠1|𝑠0, 𝑎0)(𝑃𝜋)𝑡−1(d𝑠𝑡|𝑠1)𝜋(d𝑎𝑡|𝑠𝑡)
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Therefore:

𝑉 ((𝑠0, 𝑎0)) = 𝑅(𝑠0) +
∑︁
𝑡⩾1

𝛾𝑡
∫︁
𝑠𝑡,𝑎𝑡

𝑃 𝑡(d𝑠𝑡, d𝑎𝑡|𝑠0, 𝑎0)𝑅(𝑠𝑡)

= 𝑅(𝑠0) +

∫︁
𝑠1

𝑃 (d𝑠1|𝑠0, 𝑎0)
∑︁
𝑡⩾1

𝛾𝑡
∫︁
𝑠𝑡,𝑎𝑡

(𝑃𝜋)𝑡−1(d𝑠𝑡|𝑠1)𝑅(𝑠𝑡)

= 𝑅(𝑠0) + 𝛾

∫︁
𝑠1

𝑃 (d𝑠1|𝑠0, 𝑎0)𝑉 (𝑠1)

= 𝑄(𝑠0, 𝑎0)

7.9.2 The state-action successor operator

Definition 7.13. Let ℳ be a MDP, and 𝜋 a policy. We consider �̃�(𝑠1, 𝑎1,d𝑠2,d𝑎2) the
successor state operator of the augmented MRP for policy 𝜋. Then, we define the state-action
successor state operator 𝑄(𝑠1, 𝑎,d𝑠2) as:

𝑄(𝑠1, 𝑎,d𝑠2) :=

∫︁
𝑎2

�̃�(𝑠1, 𝑎1,d𝑠2,d𝑎2) (7.9.2)

Equivalently, 𝑄 is the push-forward measure 𝑄(𝑠1, 𝑎, .) = 𝜓*�̃�(𝑠1, 𝑎, ., .) where 𝜓*(𝑠, 𝑎) = 𝑠.

Similarly to the results on the successor state operator, we have a forward Bellman equation
on 𝑄(𝑠1, 𝑎,d𝑠2):

Theorem 7.14. The state-action successor operator 𝑄(𝑠, 𝑎,d𝑠2) satisfies the forward Bellman
equation:

𝑄(𝑠, 𝑎,d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎),𝑎′∼𝜋(d𝑎′|𝑠′)𝑄(𝑠′, 𝑎′,d𝑠2) (7.9.3)

Proof. This statement is a direct consequence of Theorem 7.10 applied to the augmented MRP, with 𝜙 = 𝜓.

7.9.3 Learning the state-action successor operator
Similarly to our approach for learning 𝑀(𝑠1,d𝑠2), we can define a model of 𝑄 as a density with
respect to 𝜌: 𝑄𝜃(𝑠1, 𝑎,d𝑠2) = 𝑞𝜃(𝑠1, 𝑎, 𝑠2)𝜌(d𝑠2). The following theorem defines the temporal
difference update for the state-action operator with function approximators. We consider the
norm ‖.‖𝜌⊗𝜋, similarly to the norm ‖.‖𝜌 defined is Section 6.4 if 𝑄1(𝑠, 𝑎,d𝑠

′) = 𝑞1(𝑠, 𝑎, 𝑠
′)𝜌(d𝑠′)

and 𝑄2(𝑠, 𝑎,d𝑠
′) = 𝑞2(𝑠, 𝑎, 𝑠

′)𝜌(d𝑠′), we define:

‖𝑄1 −𝑄2‖2𝜌⊗𝜋 :=

∫︁
𝑠,𝑎,𝑠′

𝜌(d𝑠)𝜋(d𝑎|𝑠)𝜌(d𝑠′) (𝑞1(𝑠, 𝑎, 𝑠′)− 𝑞2(𝑠, 𝑎, 𝑠′))
2 (7.9.4)

and the norm is infinite if 𝑄1 or 𝑄2 has no density with respect to 𝜌.

Theorem 7.15 (TD for the state-action successor operator). Let 𝑄𝜃(𝑠1, 𝑎,d𝑠2) = 𝑞𝜃(𝑠1, 𝑎, 𝑠2)𝜌(d𝑠2)
be a current estimate of 𝑄(𝑠1, 𝑎,d𝑠2). Consider

𝑄tar(𝑠, 𝑎,d𝑠2) = 𝛿𝑠(d𝑠2) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎),𝑎′∼𝜋(d𝑎′|𝑠′)𝑄(𝑠′, 𝑎′,d𝑠2), (7.9.5)

a target estimate for 𝑄 defined via the Forward Bellman equation.
Let (𝑠, 𝑎, 𝑠′, 𝑎′, 𝑠2) be a sample of the environment such that 𝑎 ∼ 𝜋(d𝑎|𝑠), 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎),

𝑎′ ∼ 𝜋(d𝑎′|𝑠′) and 𝑠2 ∼ 𝜌 is sampled independently, we define ̂︀𝛿𝜃TD-Q(𝑠, 𝑎, 𝑠
′, 𝑎′, 𝑠2) as:

̂︀𝛿𝜃TD-Q(𝑠, 𝑎, 𝑠
′, 𝑠2) := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠2) (𝛾𝑞𝜃(𝑠

′, 𝑎′, 𝑠2)− 𝑞𝜃(𝑠, 𝑎, 𝑠2)) (7.9.6)

Then ̂︀𝛿𝜃TD-Q is an unbiased estimate of the Bellman error:

E𝑠∼𝜌,𝑎∼𝜋(.|𝑠),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎),𝑎′∼𝜋(.|𝑠′),𝑠2∼𝜌

[︁ ̂︀𝛿𝜃TD-Q(𝑠, 𝑎, 𝑠
′, 𝑎′, 𝑠2)

]︁
= −1

2
𝜕𝜃‖𝑄𝜃 −𝑄tar‖2𝜌⊗𝜋 (7.9.7)
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Proof. This statement is a direct consequence of Theorem 7.11 applied to the augmented MRP, with 𝜙 = 𝜓.

In the next Chapter, we will define the Backward Bellman equation and the Backward TD
algorithm. This algorithm is similar to the Forward TD algorithm, but there is no equivalent
update for the value function.



Appendix

7.A Experimental details
Here are some details on the experiments presented in Figure 7.1.

Continuous mazes. First, we considered a random walk in the non-reversible maze presented in Figure 7.1a.
In every state, the agent uniformly choose a direction and goes in that direction. If the movement is impossible
(wall, ...) it does not move. The four doors are non-reversible: they can be crossed only in a single way, shown by
the white arrow. This choice is because of the specific convergence properties of temporal difference algorithms
in reversible environments (Ollivier, 2018), as explained in Section 7.5.

This environment is considered as a continuous environment. We considered a continuous parameterization
of our discrete mazes. Each state is represented by its 2D coordinates (𝑥, 𝑦) ranging in (−1, 1). The network used
for learning 𝑀 is a MLP with 3 hidden layers of width 1024; its input is a set of four coordinates, corresponding
to two input states 𝑠1 and 𝑠2. Each layer is made of a linear layer followed by a layer normalization (Ba et al.,
2016) and a ReLU activation. The network used for learning 𝑉 directly via TD has the same architecture, but
with a 2-dimensional input instead of a 4-dimensional input. For forward and backward TD on M and TD on V,
we use the Adam optimizer (Kingma and Ba, 2015) with its default hyperparameters (𝛽1 = 0.9, 𝛽2 = 0.999), with
a learning rate schedule 𝜂𝑡 = 0.001

1+
√
𝑡/105

. We sample the transitions 𝑠→ 𝑠′ from 64 simultaneous trajectories,

together with 256 states (𝑠1, 𝑠2) at each step, sampled from the stationary distribution.

Torus environments. Next, we considered a simple 𝑑-dimensional torus environment. A state in the
torus is a 𝑑-tuple (𝜃1, ..., 𝜃𝑑) with 0 ⩽ 𝜃𝑖 < 1. We then define a random walk on the torus: the next state 𝑠𝑡+1 is
sampled from a starting point 𝑠𝑡 as 𝑠𝑡+1 = 𝑠𝑡 + 𝜎𝜀 mod 1, where 𝜀 is a random normally distributed vector of
dimension 𝑑. In practice, we used 𝜎 = 0.05 and defined 𝛾 = 0.95.

We parameterize the state space as (cos(2𝜋𝜃1), sin(2𝜋𝜃1), ..., cos(2𝜋𝜃𝑑), sin(2𝜋𝜃𝑑)), so that a state is rep-
resented by 2𝑑 numbers. We learn 𝑀 with a MLP with 2 hidden layers (defined as for the continuous maze
environment) of width 512.

We consider the torus of dimension 𝑑 = 8; this is high enough so that the probability to encounter a reward
is extremely low (see Section 9.3).

In this environment, we cannot compute an approximation of the true successor state operator with a
discretization. Indeed, even if we use a discretization with 8-dimensional cubes of side 0.1, computing 𝑀 would
require inverting a matrix with 1016 entries. This is not possible in practice. Instead, we look at qualitative
results, and check whether we are able to learn that 𝑠 → 𝑀(𝑠, 𝑠target) is a spike around the target, and 0
elsewhere.

Here we trained 𝑚𝜃 with forward TD. We used the Adam optimizer with its default hyperparameters, with
learning rate 10−3. We sample the transitions 𝑠→ 𝑠′ from 64 simultaneous trajectories, together with 256 states
𝑠1 at each step. We stop the training when a total number of 100, 000 transitions was seen (approximately 1500
transition per trajectory).

We select a target state 𝑠target (here 𝑠target = 0 as all states are equivalent). Then, to plot the value
function, we sample a random direction in the torus by sampling a vector 𝑣 from the normal distribution in
dimension 𝑑 = 8, and define a vector 𝑢 as 𝑢 =

|𝑣|
‖𝑣‖ (where |.| is the elementwise absolute value). Hence, 𝑢 is a

random vector sampled uniformly from the part of the sphere in which every coordinate is positive. Then we
consider the line 𝐿𝑢 = {𝜀.𝑢, 𝜀 ∈ [−1, 1]}, and plot the value 𝑚𝜃(𝑠, 𝑠target) for 𝑠 in 𝐿𝑢. In practice, we consider
a discretization of 𝐿𝑢 with 200 states. In Figure 7.1b, we sampled 5 such random directions (𝑢𝑘)1⩽𝑘⩽5, and
plotted for every 𝜀 the mean, minimum and maximum value of (𝑚𝜃(𝜀.𝑢𝑘, 𝑠target))𝑘.

Qualitatively, after 100, 000 steps in the environment we learned the right shape of the successor state.
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Chapter 8

Backward Temporal Differences
Algorithms

In this chapter, we introduce the backward Bellman equation for the successor states operator
(Section 8.1). While the standard Bellman equation (for the value function or the successor
states operator) relates the value of different states for a fixed reward (using the transition
matrix), the backward Bellman equation relates the value of a fixed state for different rewards,
also using the transition matrix. This equation has no equivalent on the value function. In
Section 8.4, we define the backward temporal difference algorithm, both in the tabular case
and with function approximators. In Section 8.3, we discuss an interpretation of the differences
between forward and backward TD as two ways to combine paths in an environment. Finally,
in Section 8.4 we show that the backward temporal algorithm is equivalent in expectation to
the forward temporal difference algorithm in the reversed time backward process.

8.1 The Backward Bellman Equation

The following theorem states the backward Bellman equation:

Theorem 8.1. The successor state operator 𝑀 is the only operator which satisfies the backward
Bellman equation,

𝑀 = Id+𝛾𝑀𝑃 (8.1.1)

Proof. The proof is identical to the proof for the forward Bellman equation, with right inverses instead of
left inverses.

This equation has no analogue on 𝑉 . The resulting operator has the same contractivity
properties as the usual (forward) Bellman operator.

Proposition 8.2 (Contractivity of the backward Bellman operator on 𝑀). Equip the space of
functions 𝐵(𝒮) with the sup norm ‖𝑓‖∞ := sup𝑠∈𝑆 |𝑓(𝑠)|. Equip the space of bounded linear
operators from 𝐵(𝒮) to 𝐵(𝒮) with the operator norm ‖𝑀‖op := sup𝑓∈𝐵(𝒮), 𝑓 ̸=0 ‖𝑀𝑓‖∞ / ‖𝑓‖∞.

Then the backward Bellman operator 𝑀 ↦→ Id+𝛾𝑀𝑃 is 𝛾-contracting for this norm.

Proof. For the backward Bellman operator, 𝑀 ↦→ Id+𝛾𝑀𝑃 , the proof is similar, using that for any bounded
operator 𝑀 and function 𝑓 , one has ‖𝑀𝑃𝑓‖∞ ⩽ ‖𝑀‖op ‖𝑃𝑓‖∞ ⩽ ‖𝑀‖op ‖𝑓‖∞, so that ‖𝑀𝑃‖op ⩽ ‖𝑀‖op
for any 𝑀 .

8.2 Backward Temporal Difference

Similarly to forward TD, we can define a backward temporal difference algorithm, leveraging the
backward Bellman equation. In the tabular case, the update on 𝑀 when observing a transition
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𝑠→ 𝑠′ is updating all values of 𝑀 of column 𝑠′, as:

∀𝑠1 : 𝑀𝑠1𝑠 ←𝑀𝑠1𝑠 + 𝜂 (𝛾𝑀𝑠1𝑠′ −𝑀𝑠1𝑠) (8.2.1)
𝑀𝑠𝑠 ←𝑀𝑠𝑠 + 𝜂 (8.2.2)

Informally, the forward TD algorithm is using that, for every target state 𝑠tar, if we observe
a transition 𝑠 → 𝑠′ and our current estimate of the value function for reaching 𝑠tar from 𝑠′

𝑀(𝑠′, 𝑠tar) is high, then the value function for reaching 𝑠tar from 𝑠 𝑀(𝑠, 𝑠tar) must be high as
well. Hence, for every target state 𝑠tar, forward TD is generalizing across starting states. On
the contrary, the backward TD algorithm is generalizing across target states 𝑠 for every starting
state 𝑠start. For every starting state 𝑠start, it is using that when observing a transition 𝑠→ 𝑠′,
if our current estimate of the value function for reaching 𝑠 from 𝑠start, 𝑀(𝑠start, 𝑠) is high, then
the value function for reaching 𝑠′ from 𝑠start 𝑀(𝑠start, 𝑠

′) must be high as well.
The following theorem defines the backward TD algorithm with function approximators. It

is the backward equivalent of Theorem 7.5:

Theorem 8.3. Let 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) be a current estimate of 𝑀(𝑠1,d𝑠2). Con-
sider 𝑀 tar = Id+𝛾𝑀𝜃𝑃 , a target estimate for M defined via the Backward Bellman equation.

Let (𝑠, 𝑠′) be a sample of the environment such that 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) and 𝑠1 ∼ 𝜌 is sampled
independently, we define ̂︀𝛿𝜃B-TD(𝑠1, 𝑠, 𝑠

′) as:

̂︀𝛿𝜃B-TD(𝑠1, 𝑠, 𝑠
′) := 𝜕𝜃𝑚𝜃(𝑠, 𝑠) +𝑚𝜃(𝑠1, 𝑠) (𝛾 𝜕𝜃𝑚𝜃(𝑠1, 𝑠

′)− 𝜕𝜃𝑚𝜃(𝑠1, 𝑠)) (8.2.3)

Then ̂︀𝛿𝜃F-TD is an unbiased estimate of the backward Bellman error:

E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑠1∼𝜌

[︁ ̂︀𝛿𝜃B-TD(𝑠1, 𝑠, 𝑠
′)
]︁
= −1

2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2𝜌 (8.2.4)

Proof. As in the proof of Theorems 7.5 and 7.7, we define 𝐽 ′(𝜃) = 1
2
‖𝑀𝜃‖2𝜌 − ⟨𝑀𝜃,𝑀

tar⟩. We define 𝜃 = 𝜃

but 𝜃 is not differentiated via 𝜕𝜃. We have:

𝐽 ′(𝜃) =
1

2

∫︁
𝑠1,𝑠2

𝑚𝜃(𝑠1, 𝑠2)
2𝜌(d𝑠1)𝜌(d𝑠2)−

∫︁
𝑠1,𝑠2

𝑚𝜃(𝑠1, 𝑠2)𝑀
tar(𝑠1, d𝑠2)𝜌(d𝑠1)

=
1

2

∫︁
𝑠1,𝑠

𝜌(d𝑠1)𝜌(d𝑠)𝑚𝜃(𝑠1, 𝑠)
2 −

∫︁
𝑠
𝜌(d𝑠)𝑚𝜃(𝑠, 𝑠)− 𝛾

∫︁
𝑠1,𝑠,𝑠′

𝜌(d𝑠1)𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝑚𝜃(𝑠1, 𝑠
′)𝑚𝜃(𝑠1, 𝑠)

where in the first part 𝑠2 is renamed as 𝑠, in the second term 𝑠1 is renamed as 𝑠, and in the last one 𝑠2 is
renamed as 𝑠. Therefore:

−𝜕𝜃𝐽 ′(𝜃)

=

∫︁
𝑠1,𝑠

𝜌(d𝑠1)𝜌(d𝑠)𝜕𝜃𝑚𝜃(𝑠1, 𝑠)𝑚𝜃(𝑠1, 𝑠)−
∫︁
𝑠
𝜌(d𝑠)𝜕𝜃𝑚𝜃(𝑠, 𝑠)

− 𝛾
∫︁
𝑠1,𝑠,𝑠′

𝜌(d𝑠1)𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝜕𝜃𝑚𝜃(𝑠1, 𝑠
′)𝑚𝜃(𝑠1, 𝑠)

=

∫︁
𝑠1,𝑠,𝑠′

𝜌(d𝑠1)𝜌(d𝑠)𝑃 (𝑠,d𝑠′)
(︀
𝜕𝜃𝑚𝜃(𝑠, 𝑠) +𝑚𝜃(𝑠1, 𝑠)

(︀
𝛾𝜕𝜃𝑚𝜃(𝑠1, 𝑠

′)− 𝜕𝜃𝑚𝜃(𝑠1, 𝑠)
)︀)︀

Contrary to forward TD, learning 𝑀 by backward TD then setting 𝑉 =𝑀𝑅 is not equivalent
to learning 𝑉 via TD in the tabular case. Still, backward TD for 𝑀 is not structurally different
from forward TD: it corresponds to forward TD for the “time-reversed” Markov process, as
shown in Section 8.4. But since states are typically observed in a time-ordered sequence, this
might produce a difference in practice.

8.3 Path Combinatorics Interpretation of Forward and
Backward TD

The difference between forward and backward TD for 𝑀 is best understood in the path
viewpoint on 𝑀 (Eq. 6.2.8). Indeed, the current estimate of 𝑀𝑠1𝑠2 contains a current estimation
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(a) Forward TD (b) Backward TD

Figure 8.1: Combining paths with forward TD and backward TD.

on the number of paths from 𝑠1 to 𝑠2, weighted by their estimated probabilities in the Markov
process. TD replaces 𝑀 with 𝑃𝑀 , and adds Id, which represents the trivial paths from 𝑠 to
𝑠. Backward TD uses 𝑀𝑃 instead. In both cases, the operator 𝑃 is sampled via an observed
transition 𝑠→ 𝑠′. Thus, 𝑃𝑀 builds new known paths by taking all paths contained in 𝑀 and
adding the transition 𝑠→ 𝑠′ at the front of each path, while 𝑀𝑃 adds the transition 𝑠→ 𝑠′ at
the back of each path in 𝑀 (Fig. 8.1). Forward TD reasons at fixed target states (rewards)
(Greydanus and Olah, 2019), while backward TD reasons at fixed starting points.

Thus, TD and backward TD on 𝑀 differ in how they learn new paths from known paths
when each new transition is observed. Arguably, both are reasonable ways to update a mental
model of paths in an environment when discovering new transitions (e.g., if a new street 𝑠→ 𝑠′

opens in a city).
There is a third way to build new paths when observing a new transition 𝑠→ 𝑠′: take all

known paths to 𝑠, all known paths from 𝑠′, and insert 𝑠→ 𝑠′ in the middle. This exploits path
concatenation, roughly doubling the length of known paths. This operation is involved in the
way that 𝑀 actually changes when the process is changed by increasing 𝑃 (𝑠,d𝑠′) (the way
possible paths actually change when a new street opens). This is the basis of the “second-order”
algorithms we present for 𝑀 in Chapter 9.

8.4 Backward TD and the Backward Process

In this section, we prove that backward TD is forward TD on the time-reversed process
(Theorem 8.5). Contrary to the rest of this text, we assume that the Markov process is ergodic
and that the data are coming from a stationary random trajectory of the process.

8.4.1 The backward process

Define the backward process 𝑃back(𝑠
′,d𝑠) by reversing time: it is the law of 𝑠 given 𝑠′ in a

transition 𝑠→ 𝑠′. In this section, we assume that the Markov Process is ergodic, and that 𝜌
is its invariant measure. We now define more precisely the backward process. Let (𝑠, 𝑠′) be a
random pair of states distributed according to 𝜌(d𝑠)𝑃 (𝑠,d𝑠′), and define 𝑃back(𝑠

′,d𝑠) to be the
conditional distribution of 𝑠 given 𝑠′ under this distribution. (This exists by the general theory
of conditional distributions (Parthasarathy, 2005, Thm. 8.1), and is well-defined up to a set of
𝜌-measure 0.) Since 𝜌 is the invariant measure of the process, the law of both 𝑠 and 𝑠′ is 𝜌, and
one has

𝜌(d𝑠)𝑃 (𝑠,d𝑠′) = 𝜌(d𝑠′)𝑃back(𝑠
′,d𝑠) (8.4.1)

by definition of conditional probabilities.
Then, given 𝑠𝑡, the distribution of 𝑠𝑡−𝑛 follows the backward process from 𝑠𝑡. Namely, the

law of any sequence of observations (𝑠𝑡−𝑛, . . . , 𝑠𝑡) from the stationary distribution of the process
satisfies

𝜌(d𝑠𝑡−𝑛)𝑃 (𝑠𝑡−𝑛,d𝑠𝑡−𝑛+1) · · ·𝑃 (𝑠𝑡−1,d𝑠𝑡) = 𝜌(d𝑠𝑡)𝑃back(𝑠𝑡,d𝑠𝑡−1) · · ·𝑃back(𝑠𝑡−𝑛+1,d𝑠𝑡−𝑛).



136 CHAPTER 8. BACKWARD TEMPORAL DIFFERENCES ALGORITHMS

Lemma 8.4. Let 𝑀back := (Id−𝛾𝑃back)
−1 be the successor state operator of the backward

process. Then 𝑀back is related to the successor states operator 𝑀(𝑠,d𝑠′) as:

𝜌(d𝑠)𝑀(𝑠,d𝑠′) = 𝜌(d𝑠′)𝑀back(𝑠′,d𝑠) (8.4.2)

Proof. By induction from the definition of the backward process, we have 𝜌(d𝑠′)𝑃𝑛back(𝑠
′,d𝑠) = 𝜌(d𝑠)𝑃𝑛(𝑠, d𝑠′).

Then by definition of 𝑀back,

𝜌(d𝑠′)𝑀backward(𝑠′,d𝑠) = 𝜌(d𝑠′)
∑︁
𝑛⩾0

𝛾𝑛𝑃𝑛backward(𝑠
′, d𝑠) =

∑︁
𝑛⩾0

𝛾𝑛𝜌(d𝑠)𝑃𝑛(𝑠, d𝑠′) = 𝜌(d𝑠)𝑀(𝑠,d𝑠′)

8.4.2 Backward TD and the backward process
We can now show that that backward TD is forward TD on the backward process. Remember
that the forward and backward successor state operators are linked by 𝜌(d𝑠1)𝑀(𝑠1,d𝑠2) =
𝜌(d𝑠2)𝑀

back(𝑠2,d𝑠1).

Theorem 8.5 (Backward TD is forward TD on the backward process). Let 𝑀 and 𝑀back be
measure-valued functions such that 𝑀back is the time-reverse of 𝑀 , namely 𝜌(d𝑠1)𝑀(𝑠1,d𝑠2) =
𝜌(d𝑠2)𝑀

back(𝑠2,d𝑠1). Then the backward TD update

𝑀 ← Id+𝛾𝑀𝑃 (8.4.3)

is equivalent (𝜌-almost everywhere) to

𝑀back ← Id+𝛾𝑃back𝑀
back. (8.4.4)

Hence, this theorems show that the forward and backward TD algorithms are very close,
and leverage the information acquired from observed trajectories similarly. From this viewpoint,
there is no theoretical reason to expect a gain in sample efficiency when using backward TD
compared to forward TD. Still, as the updates are different, there could be practical differences.

Proof. Let 𝐷𝜌(d𝑠1, d𝑠2) be the diagonal measure with marginal 𝜌, namely, 𝐷𝜌(d𝑠1, d𝑠2) = 𝜌(d𝑠1)𝛿𝑠1 (d𝑠2) =
𝜌(d𝑠2)𝛿𝑠2(d𝑠1). Remember that the operator Id corresponds to the process 𝛿𝑠1(d𝑠2). By multiplying the
backward TD update by 𝜌(d𝑠1) one gets

𝜌(d𝑠1)𝑀(𝑠1, d𝑠2)← 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾𝜌(d𝑠1)(𝑀𝑃 )(𝑠1, d𝑠2) (8.4.5)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾

∫︁
𝑠′
𝜌(d𝑠1)𝑀(𝑠1,d𝑠

′)𝑃 (𝑠′, d𝑠2) (8.4.6)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾

∫︁
𝑠′
𝑀back(𝑠′, d𝑠1)𝜌(d𝑠

′)𝑃 (𝑠′, d𝑠2) (8.4.7)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾

∫︁
𝑠′
𝑀back(𝑠′, d𝑠1)𝜌(d𝑠2)𝑃back(𝑠2, d𝑠

′) (8.4.8)

= 𝐷𝜌(d𝑠1, d𝑠2) + 𝛾𝜌(d𝑠2)(𝑃back𝑀
back)(𝑠2, d𝑠1) (8.4.9)

and since 𝜌(d𝑠1)𝑀(𝑠1, d𝑠2) = 𝜌(d𝑠2)𝑀back(𝑠2, d𝑠1), this rewrites as

𝜌(d𝑠2)𝑀
back(𝑠2,d𝑠1)← 𝜌(d𝑠2)𝛿𝑠2 (d𝑠1) + 𝛾𝜌(d𝑠2)(𝑃back𝑀

back)(𝑠2, d𝑠1) (8.4.10)

namely (𝜌-almost everywhere),

𝑀back(𝑠2, d𝑠1)← 𝛿𝑠2 (d𝑠1) + 𝛾(𝑃back𝑀
back)(𝑠2, d𝑠1) (8.4.11)

which is forward TD on 𝑀back for the time-reversed process.



Chapter 9

Second-Order Methods for
Successor States: Implicit Process
Estimation and Bellman–Newton

We now turn to more complex, “second-order” algorithms for estimating successor states and
value functions. These approaches were our first motivation to study and learn the successor
state operator. Indeed, in Chapter 7, we saw that we are able to derive a Forward TD algorithm
for the successor states operator. In the tabular case, we saw that learning the value function
via a successor state estimate learned with TD is equivalent to learning directly the value
function via TD directly. While this approach can still be useful, for a very sparse reward,
or thanks to the generalization obtained from a parametric model 𝑚𝜃(𝑠1, 𝑠2), the Forward
Bellman equation on 𝑀 and the Bellman equation on 𝑉 are arguably leveraging the observed
transitions in the same way. In Chapter 8, we introduced the Backward TD, which has no
equivalent on the value function. Still, we saw in Theorem 8.5 that the Backward TD update
was equivalent (in expectation) to the forward TD update on the backward process. While
these two approaches might obtain different results in practice, the two Bellman equations are
leveraging the observed transitions similarly. Our goal with the successor state operator was to
leverage all the information contained in this object, and derive richer update equations.

In this chapter, we study second-order updates for the successor states operator. First, we
study in Section 9.1 the online estimate of 𝑀 and 𝑉 in the tabular case, obtained by directly
estimating the transition matrix and reward function, and exactly solving the Bellman equation
in this estimated process. This corresponds to the LSTD algorithm in the specific tabular
case (Sutton and Barto, 2018, Section 9.8). In Section 9.2, we show that this provides an explicit
online evolution equation for 𝑀 and 𝑉 from observed transitions, in which the transition matrix
does not appear, hence called successor states via implicit process estimation (SSIPE). In
Section 9.3, we compare experimentally the sample efficiency of policy evaluation with SSIPE,
TD and TD(𝜆) in the tabular setting, and show that SSIPE is largely superior to these methods
(a non-asymptotic convergence bound for SSIPE is given in Chapter 10). Therefore, there
is a potential sample efficiency improvement in using the successor state operator for policy
evaluation.

Then, in Section 9.4, we show that the SSIPE update of 𝑀 , taken in expectation, defines
a Bellman–Newton operator, so called because it corresponds exactly to the Newton method
for inverting the matrix 𝑀 . In Section 9.5 we derive a Bellman–Newton parametric update,
extending it beyond full-matrix tabular updates to sampling in arbitrary state spaces.. This
new Bellman–Newton operator has no equivalent on the Value function. Intuitively, it proceeds
by concatenating known paths of the MDP, thus doubling the length of known paths, while TD
and backward TD just add one transition to the set of known paths, as formalized in Section 9.6.
Online estimation of 𝑀 and the Bellman–Newton operator can be seen as “second-order” TD
algorithms. Accordingly, they are also numerically trickier. Strengths and weaknesses are
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discussed in Section 9.7.

9.1 Estimating a Markov Process Online

We now introduce estimates of 𝑀 and 𝑉 by online estimation of the Markov process, first in
the tabular case, then via function approximation. In a (small) finite state space, an obvious
approach to learn 𝑀 is to first learn an estimate (𝑃 , �̂�) of the transition matrix 𝑃 and reward
vector 𝑅 of the Markov reward process, by direct empirical averages; then set 𝑀 and 𝑉 to
their true values in the estimated Markov process, namely, �̂� =

∑︀
𝑛⩾0 𝛾

𝑛𝑃𝑛 = (Id−𝛾𝑃 )−1

and 𝑉 = �̂��̂�.
The empirical averages 𝑃 and �̂� are updated for each new transition 𝑠→ 𝑠′ with reward 𝑟𝑠,

by updating the row 𝑠 of the transition matrix 𝑃 , and the value �̂�𝑠 at 𝑠:

𝑃𝑠𝑠2 ← (1− 1/𝑛𝑠)𝑃𝑠𝑠2 + (1/𝑛𝑠)1𝑠2=𝑠′∀𝑠2, (9.1.1)

�̂�𝑠 ← (1− 1/𝑛𝑠)�̂�𝑠 + (1/𝑛𝑠)𝑟𝑠 (9.1.2)

with 𝑛𝑠 the number of visits to state 𝑠 up to time 𝑡. The initialization of 𝑃 and �̂� is forgotten
after the first observation at each state (𝑛𝑠 = 1), but to fix ideas we initialize to 𝑃 = �̂� = 0.
The corresponding estimates �̂� = (Id−𝛾𝑃 )−1 and 𝑉 = �̂��̂� converge to their true values.
This method corresponds to the very specific tabular case of Least Squares Temporal Difference
(Bradtke and Barto, 1996) or to the plug-in estimate (Pananjady and Wainwright, 2019).

The update (9.1.1) is model based (see Section 1.3): it learns a model 𝑃 of the transition
operator and use it for policy evaluation. The inverse operation can only be performed in the
tabular case. Still, we will see in next Section that the process estimation can be done implicitly :
we can directly estimate the matrix �̂� , without storing any explicit model 𝑃 or computing
explicitly an inverse (Id−𝛾𝑃 )−1. Hence, this makes this approach model-free. This is done by
online inversion via the Sherman-Morrison formula, and we call the method Successor States
via Implicit Process Estimation (SSIPE). Then, we can approximate SSIPE with function
approximators, via the Bellman–Newton update, as introduced in Section 9.5.

9.2 Successor States via Implicit Process Estimation

Direct matrix inversion is inconvenient. But since (9.1.1) is a rank-one update of the matrix
𝑃 , one can compute the update of �̂� resulting from (9.1.1); this update does not explicitly
involve 𝑃 anymore. This will form the basis for the parametric version.

We call the resulting algorithm successor states via implicit process estimation (SSIPE).

Theorem 9.1 (SSIPE: Tabular online update of 𝑀). When a transition 𝑠→ 𝑠′ is added to an
empirical estimate of a Markov reward process via (9.1.1), the successor state matrix �̂� of the
estimated process becomes �̂� ← �̂� + 𝛿𝑀 with

𝛿𝑀𝑠1𝑠2 =
1

𝑛𝑠
�̂�𝑠1𝑠

1𝑠2=𝑠 + 𝛾�̂�𝑠′𝑠2 − �̂�𝑠𝑠2

1− 1
𝑛𝑠
(𝛾�̂�𝑠′𝑠 − �̂�𝑠𝑠 + 1)

∀𝑠1, 𝑠2 (9.2.1)

with 𝑛𝑠 the number of times state 𝑠 has been sampled.

This update is similar to the LSTD update with the Sherman-Morrison formula (Geramifard
et al., 2006) in the very specific tabular case, explained in (Sutton and Barto, 2018, Section
9.8).

Proof. Define �̂� := (Id−𝛾𝑃 )−1 where 𝑃 is updated by (9.1.1). The update (9.1.1) can be rewritten as
𝑃 ← 𝑃 + (1/𝑛𝑠)1𝑠(1⊤𝑠′− 1

⊤
𝑠𝑃 ). This is a rank-one update of 𝑃 . The update of Id−𝛾𝑃 is −𝛾 times the

update of 𝑃 , and is still rank-one: it is equal to 𝑢𝑣⊤ with 𝑢 := −(𝛾/𝑛𝑠)1𝑠 and 𝑣⊤ := (1⊤
𝑠′− 1

⊤
𝑠𝑃 ). The

Sherman–Morrison formula gives the update of the inverse of a matrix after a rank-one update. By this
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formula, the update of �̂� = (Id−𝛾𝑃 )−1 is

�̂� ←�̂� −
�̂�𝑢𝑣⊤�̂�

1 + 𝑣⊤�̂�𝑢
= �̂� +

1

𝑛𝑠

�̂�1𝑠(𝛾1⊤𝑠′− 𝛾1
⊤
𝑠𝑃 )�̂�

1− 1
𝑛𝑠

(𝛾1⊤
𝑠′− 𝛾1⊤𝑠𝑃 )�̂�1𝑠

Now, since �̂� = (Id−𝛾𝑃 )−1, we have 𝛾𝑃�̂� = �̂� − Id. Therefore, the terms (𝛾1⊤
𝑠′− 𝛾1

⊤
𝑠𝑃 )�̂� are equal to

𝛾1⊤
𝑠′�̂� − 1

⊤
𝑠�̂� + 1

⊤
𝑠, and the update is

�̂� ←�̂� +
1

𝑛𝑠

�̂�1𝑠(𝛾1⊤𝑠′�̂� − 1
⊤
𝑠�̂� + 1

⊤
𝑠)

1− 1
𝑛𝑠

(𝛾1⊤
𝑠′�̂� − 1⊤𝑠�̂� + 1⊤𝑠)1𝑠

= �̂� +
1

𝑛𝑠

�̂�1𝑠(𝛾1⊤𝑠′�̂� − 1
⊤
𝑠�̂� + 1

⊤
𝑠)

1− 1
𝑛𝑠

(𝛾�̂�𝑠′𝑠 − �̂�𝑠𝑠 + 1)

which is the exact update of �̂� . This provides the update (9.2.1).

This describes the “true” change of 𝑀 when the Markov process changes by increasing 𝑃𝑠𝑠′ .
This update contains a two-sided term 𝑀𝑠1𝑠𝑀𝑠′𝑠2 : in terms of paths, this term combines all
known paths from 𝑠1 to 𝑠, the transition 𝑠→ 𝑠′, then all known paths from 𝑠′ to 𝑠2 (Section 9.6).

In the following section, we will see that this SSIPE algorithms leads to a new fixed point
equation on the successor states operator, which can be used to derive an update even in
continuous environments with function approximators.

9.3 Tabular experiments with SSIPE, TD and TD(𝜆)

(a) SSIPE vs TD in a tabular large maze (b) Generated maze with a grid of width 20

(c) Influence of the length 𝐿 in the circle envi-
ronment 𝐶(𝐿). (d) Influence of environment size

Figure 9.1: Tabular experiments with SSIPE, TD and TD(𝜆)

In this section, we compare empirically the sample efficiency of SSIPE, TD and TD(𝜆) in
the tabular setting. All the experimental details are in Appendix 9.A.
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To test learning of 𝑀 in tabular situations, we first generated a number of random mazes
with up to 2,700 states (see figures in Appendix 9.A). We learn 𝑀 via SSIPE, namely, via
the update (9.2.1), with the reward estimated via the empirical average (9.1.1). The value
function can then be estimated by the matrix product 𝑀𝑅. For comparison, we also learn
𝑉 via ordinary TD and TD(𝜆). The policy is a random walk in the maze. SSIPE is largely
superior to TD and TD(𝜆) in these mazes (Fig 9.1a).

Next, we turn to a more systematic study of the efficiency of learning 𝑉 via SSIPE on 𝑀 ,
versus ordinary TD(𝜆). For this, we define a simple variable-size environment and study the
effects of increased size. The environment has two directions: a pure “noise” component and a
deterministic move component. Formally, the state space is {1, ..., 𝐿} × {1, ...,𝑊} where the
length 𝐿 and width 𝑊 are integers; the transition matrix is 𝑃(𝑙1,𝑤1),(𝑙2,𝑤2) =

1
𝑊 𝛿𝑙2=𝑙1+1 mod 𝐿,

and the reward is sparse, located at state (1, 1). For TD(𝜆), the parameter 𝜆 is tuned separately
for each environment size. The results are in Figure 9.1d. With small 𝑊 , TD(𝜆) is as efficient
as SSIPE, but with large 𝑊 , eligibility traces incur a higher variance (and the optimal 𝜆 gets
close to 0), and the gap between TD and SSIPE increases. Compared to SSIPE, this example
shows that TD(𝜆) does not always efficiently exploit the information from observed transitions.

These experiments show that TD or even TD(𝜆) do not exploit all the observed information
in the environment, and that it is possible to improve policy evaluation sample efficiency. In
Chapter 10, we provide non-asymptotic convergence bounds for policy evaluation with SSIPE
in the tabular setting.

Still, the SSIPE method can only be used in a tabular setting. We now introduce the
Bellman–Newton algorithm, a second-order policy evaluation method, which can be used in
continuous environments.

9.4 The Bellman–Newton Operator

9.4.1 The expected SSIPE update
In Theorem 9.1, we saw that when a transition 𝑠→ 𝑠′ is observed and we update our model of
𝑃 via (9.1.1), the successor state matrix �̂� of the estimated process becomes �̂� ← �̂� +̂︂𝛿𝑀
with 𝛿𝑀𝑠1𝑠2 = 1

𝑛𝑠
�̂�𝑠1𝑠

1𝑠2=𝑠+𝛾�̂�𝑠′𝑠2−�̂�𝑠𝑠2

1− 1
𝑛𝑠

(𝛾�̂�𝑠′𝑠−�̂�𝑠𝑠+1)
.

We consider the expected update over observed transitions (𝑠, 𝑠′): E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠) [𝛿𝑀 ]

Theorem 9.2. Estimate the successor matrix of a finite MRP by 𝑀𝑡 = (Id−𝛾𝑃𝑡)−1 where 𝑃𝑡
is estimated directly by the empirical averages (9.1.1). Then, in expectation over the transition
(𝑠𝑡, 𝑠

′
𝑡) observed at step 𝑡, conditionally to the current estimate 𝑀𝑡, we have:

E𝑠𝑡∼𝜌,𝑠′𝑡∼𝑃 (.|𝑠𝑡) [𝑀𝑡+1|𝑀𝑡] =𝑀𝑡 +
1

𝑡
𝛿𝑀 + 𝑜(1/𝑡) (9.4.1)

with
𝛿𝑀 =𝑀𝑡 −𝑀𝑡(Id−𝛾𝑃 )𝑀𝑡 (9.4.2)

Proof. First, note that the expectation in the statement is averaged over the next step, but conditional to
�̂�𝑡 computed in the previous steps. In this proof, we will just write E for short.

We have:

E𝑠𝑡∼𝜌,𝑠′𝑡∼𝑃 (.|𝑠𝑡) [𝑀𝑡+1|𝑀𝑡] =𝑀𝑡 + E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︁̂︂𝛿𝑀]︁
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For every 𝑠1, 𝑠2 ∈ 𝒮, we have:(︁
E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︁̂︂𝛿𝑀]︁)︁
𝑠1𝑠2

= E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︃
1

𝑛𝑠
(𝑀𝑡)𝑠1𝑠

1𝑠2=𝑠 + 𝛾(𝑀𝑡)𝑠′𝑠2 − (𝑀𝑡)𝑠𝑠2

1− 1
𝑛𝑠

(𝛾(𝑀𝑡)𝑠′𝑠 − (𝑀𝑡)𝑠𝑠 + 1)

]︃

= E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︃
1

𝑡𝜌𝑠 + 𝑜(𝑡)
(𝑀𝑡)𝑠1𝑠

1𝑠2=𝑠 + 𝛾(𝑀𝑡)𝑠′𝑠2 − (𝑀𝑡)𝑠𝑠2

1−𝑂( 1
𝑡
)

]︃

=
1

𝑡
E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︂
1

𝜌𝑠
(𝑀𝑡)𝑠1𝑠

(︀
1𝑠2=𝑠 + 𝛾(𝑀𝑡)𝑠′𝑠2 − (𝑀𝑡)𝑠𝑠2

)︀]︂
+ 𝑜(1/𝑡)

where the second line holds because 𝑛𝑠 = 𝑡𝜌𝑠 + 𝑜(𝑡) by the law of large numbers (since 𝑠 is sampled from 𝜌),
and the last one is obtained by removing terms in 𝑜(1/𝑡). This leads to:(︁

E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︁̂︂𝛿𝑀]︁)︁
𝑠1𝑠2

=
1

𝑡

∑︁
𝑠,𝑠′

𝜌𝑠𝑃𝑠𝑠′

(︂
1

𝜌𝑠
(𝑀𝑡)𝑠1𝑠

(︀
1𝑠2=𝑠 + 𝛾(𝑀𝑡)𝑠′𝑠2 − (𝑀𝑡)𝑠𝑠2

)︀)︂
+ 𝑜(1/𝑡)

=
1

𝑡

∑︁
𝑠

((𝑀𝑡)𝑠1𝑠 (1𝑠2=𝑠 + 𝛾(𝑃𝑀𝑡)𝑠𝑠2 − (𝑀𝑡)𝑠𝑠2 )) + 𝑜(1/𝑡)

Therefore, we have:

E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠)

[︁̂︂𝛿𝑀]︁ =𝑀𝑡 −𝑀𝑡(Id−𝛾𝑃 )𝑀𝑡 + 𝑜(1/𝑡) (9.4.3)

and we can conclude:
E𝑠∼𝜌,𝑠′∼𝑃 (.|𝑠) [𝑀𝑡+1|𝑀𝑡] =𝑀𝑡 +

1

𝑡
𝛿𝑀 + 𝑜(1/𝑡) (9.4.4)

with
𝛿𝑀 =𝑀𝑡 −𝑀𝑡(Id−𝛾𝑃 )𝑀𝑡 (9.4.5)

In the following section, we will see that this expected SSIPE update corresponds to a new
fixed-point equation on the successor states operator, which can be used for learning. We call
this equation the Bellman–Newton equation, because of its relation with Newton’s method for
matrix inversion.

9.4.2 Definition of Bellman–Newton operator
We now translate the expected SSIPE update derived in Theorem 9.2 into an operator, similarly
to the Bellman operator and the expected TD update: We know that the expected Temporal
Difference update (either on 𝑉 as in Section 1.4.2 or on 𝑀 as in Section 7.3) can be written as

𝑉𝑡+1 := 𝑉𝑡 + 𝜂𝑡𝛿𝑉,

with
𝛿𝑉 = (𝑅+ 𝛾𝑃𝑉𝑡 − 𝑉𝑡) = 𝑇 · 𝑉𝑡 − 𝑉𝑡,

with 𝑇 the Bellman operator
𝑇 · 𝑓 = 𝑅+ 𝛾𝑃𝑓.

In Theorem 9.2, we proved that 𝑀𝑡+1 =𝑀𝑡 + 𝜂𝑡𝛿𝑀 with

𝛿𝑀 =𝑀𝑡 −𝑀𝑡(Id−𝛾𝑃 )𝑀𝑡 = 𝑇 ·𝑀𝑡)−𝑀𝑡

with
𝑇 ·𝑀 := 2𝑀 −𝑀(Id−𝛾𝑃 )𝑀.

This leads to the definition of the Bellman–Newton operator:

Definition 9.3 (Bellman–Newton operator). We call Bellman–Newton operator the operator

𝑀 ↦→ 2𝑀 −𝑀(Id−𝛾𝑃 )𝑀. (9.4.6)

The Bellman–Newton operator defines a new fixed point for 𝑀 , additionally to the forward
and backward Bellman equation:

Proposition 9.4. The successor state 𝑀(𝑠1,d𝑠2) is a fixed point of the Bellman–Newton
operator
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Proof. We have:

2𝑀 −𝑀(Id−𝛾𝑃 )𝑀 = 2𝑀 −𝑀(Id−𝛾𝑃 )(Id−𝛾𝑃 )−1 = 2𝑀 −𝑀 =𝑀

9.4.3 Bellman–Newton operator and Newton method for matrix in-
version

The reason for the name is the following: Inverting a matrix 𝐴 by iterating 𝑀 ← 2𝑀 −𝑀𝐴𝑀
is the Newton method for matrix inversion, going as far back as 1933 (Pan and Schreiber, 1991).
The Newton method has superexponential convergence, squaring the error (doubling precision)
at each step.

Unfortunately, this method does not always converge. In particular, it is initialization-
dependent. For instance, the initialization 𝑀 = 0 is a fixed point. In general, the Bellman–
Newton operator preserves the kernel and image of 𝑀 , so there are many fixed points. Still,
𝑀 = (Id−𝛾𝑃 )−1 is the only full-rank fixed point.

Convergence of the Newton method for matrix inversion is quite well understood (Pan and
Schreiber, 1991) and works if the spectral radius of Id−𝐴𝑀 is less than 1 at initialization.
Otherwise, the method can diverge. For instance, 𝐴 = Id−𝛾𝑃 for successor states, so initializing
to 𝑀 = Id converges.

9.5 Parametric Bellman–Newton Update

Similarly to TD algorithms for learning the successor state operator via the Bellman operators,
we can derive a parametric update for successor state operator via the Bellman Newton operator,
which leads to Algorithm 9. This is formalized in the following theorem:

Theorem 9.5 (Bellman-Newton update for successor states with function approximation).
Let 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) be a current estimate of 𝑀(𝑠1,d𝑠2). Consider 𝑀 tar =
2𝑀𝜃 −𝑀𝜃(Id−𝛾𝑃 )𝑀𝜃, a target estimate for M defined via the Bellman-Newton equation.

Let (𝑠, 𝑠′) be a sample of the environment such that 𝑠 ∼ 𝜌, 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) and 𝑠1, 𝑠2 ∼ 𝜌 are
sampled independently, we define ̂︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠

′, 𝑠2) as:

̂︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠
′, 𝑠2) := 𝑚𝜃(𝑠1, 𝑠) 𝜕𝜃𝑚𝜃(𝑠1, 𝑠) +𝑚𝜃(𝑠1, 𝑠)(𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)) 𝜕𝜃𝑚𝜃(𝑠1, 𝑠2)
(9.5.1)

Then ̂︀𝛿𝜃BN is an unbiased estimate of the Bellman-Newton error:

E𝑠,𝑠1,𝑠2∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′)

[︁ ̂︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠
′, 𝑠2)

]︁
= −1

2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2𝜌 (9.5.2)

Proof. We have:

𝑀tar(𝑠1, d𝑠2) = 2𝑀𝜃(𝑠1, d𝑠2)− (𝑀𝜃(Id−𝛾𝑃 )𝑀𝜃)(𝑠1,d𝑠2) (9.5.3)

and:

(𝑀𝜃(Id−𝛾𝑃 )𝑀𝜃)(𝑠1, d𝑠2) =

=

∫︁
𝑠,𝑠′

𝜌(d𝑠)𝑚𝜃(𝑠1, 𝑠)(Id−𝛾𝑃 )(𝑠, d𝑠′)𝑚(𝑠′, 𝑠2)𝜌(d𝑠2)

=

∫︁
𝑠
𝜌(d𝑠)𝑚𝜃(𝑠1, 𝑠)𝑚𝜃(𝑠, 𝑠2)𝜌(d𝑠2)− 𝛾

∫︁
𝑠,𝑠′

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝑚𝜃(𝑠1, 𝑠)𝑚(𝑠′, 𝑠2)𝜌(d𝑠2)

= 𝜌(d𝑠2)

∫︁
𝑠,𝑠′

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝑚𝜃(𝑠1, 𝑠)(𝑚𝜃(𝑠, 𝑠2)− 𝛾𝑚(𝑠′, 𝑠2))

Therefore, 𝑀tar(𝑠1, d𝑠2) = 𝑚tar(𝑠1, 𝑠2)𝜌(d𝑠2) with

𝑚tar(𝑠1, 𝑠2) = 2𝑚𝜃(𝑠1, 𝑠2) +

∫︁
𝑠,𝑠′

𝜌(d𝑠)𝑃 (𝑠,d𝑠′)𝑚𝜃(𝑠1, 𝑠)
(︀
𝛾𝑚(𝑠′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)

)︀
(9.5.4)
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Algorithm 9 Bellman–Newton for successor states with function approximation.

Input: Policy 𝜋(𝑎|𝑠), randomly initialized model 𝑚𝜃(𝑠1, 𝑠2); TransitionMemory, maximum
number of time steps 𝑇
repeat

for 𝐾 trajectories do
Get an initial state 𝑠0 from the environment.
for 0 ⩽ 𝑡 ⩽ 𝑇 steps do do

Sample 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), execute 𝑎𝑡 and observe 𝑠𝑡+1

Store in the transition memory the transition TransitionMemory← (𝑠𝑡, 𝑠𝑡+1)
end for
for 𝐿 gradient steps do

Sample (𝑠, 𝑠′) ∼ TransitionMemory,
Sample (𝑠1,_) ∼ TransitionMemory, (𝑠2,_) ∼ TransitionMemorŷ︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠

′, 𝑠2) := 𝑚𝜃(𝑠1, 𝑠)(𝛾𝑚𝜃(𝑠
′, 𝑠2) − 𝑚𝜃(𝑠, 𝑠2)) 𝜕𝜃𝑚𝜃(𝑠1, 𝑠2) +

𝑚𝜃(𝑠1, 𝑠)𝜕𝜃𝑚𝜃(𝑠1, 𝑠)

Stochastic gradient step: 𝜃 ← 𝜃 + 𝜂 ̂︀𝛿𝜃BN.
end for

end for
until end of learning

Therefore, we have:

𝐽(𝜃) :=
1

2
‖𝑀𝜃 −𝑀tar‖2𝜌

=

∫︁
𝑠1𝑠2

𝜌(d𝑠1)𝜌(d𝑠2)
(︀
𝑚𝜃(𝑠1, 𝑠2)−𝑚tar(𝑠1, 𝑠2)

)︀2
and:

− 𝜕𝜃𝐽(𝜃) =
1

2
‖𝑀𝜃 −𝑀tar‖2𝜌 = −

∫︁
𝑠1𝑠2

𝜌(d𝑠1, d𝑠2)𝜕𝜃𝑚𝜃(𝑠1, 𝑠2)
(︀
𝑚𝜃(𝑠1, 𝑠2)−𝑚tar(𝑠1, 𝑠2)

)︀
=

∫︁
𝑠1,𝑠2𝑠,𝑠′

𝜌(d𝑠1, d𝑠2,d𝑠)𝑃 (𝑠, d𝑠′)𝜕𝜃𝑚𝜃(𝑠1, 𝑠2)
(︀
𝑚𝜃(𝑠1, 𝑠2) +𝑚𝜃(𝑠1, 𝑠)

(︀
𝛾𝑚(𝑠′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)

)︀)︀
=

∫︁
𝑠1,𝑠2𝑠,𝑠′

𝜌(d𝑠1, d𝑠2, d𝑠)𝑃 (𝑠, d𝑠′)
(︀
𝜕𝜃𝑚𝜃(𝑠1, 𝑠)𝑚𝜃(𝑠1, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠1, 𝑠2)𝑚𝜃(𝑠1, 𝑠)

(︀
𝛾𝑚(𝑠′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)

)︀)︀
where for the last line we replace 𝑠2 by 𝑠 in the first term as they are both independent of 𝑠1 and share the
same law 𝜌.

Implementing this update requires sampling two additional states 𝑠1 and 𝑠2 from the dataset,
in addition to the transition 𝑠→ 𝑠′.

9.6 The Bellman–Newton Operator and Path Composition

In Section 8.3, we explained the link between learning successor states and counting paths in a
Markov process. Here, we formalize that link, by studying how updating 𝑀 via the Bellman
equation (or the backward Bellman equation), or the Bellman-Newton operator updates the
paths represented in 𝑀 . We will prove that after 𝑡 steps, the estimate of 𝑀 via Bellman–Newton
exactly contains all paths up to length 2𝑡 − 1 with their correct probabilities in the Markov
process, while forward and backward TD exactly contain all paths up to length 𝑡.

Thus for each algorithm (forward TD, backward TD, and Bellman–Newton), we consider
the exact (deterministic, non-sampled) update: we set 𝑀0 = Id and then define at step 𝑡+ 1
the update 𝑀𝑡+1 as the target update given by the corresponding fixed point equation. For
forward TD, the operator update is defined as:

𝑀TD
𝑡+1 = Id+𝛾𝑃𝑀TD

𝑡 . (9.6.1)
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Figure 9.2: Combining paths: forward TD, backward TD, and path composition (Bellman–
Newton).

For backward TD, the operator update is defined as:

𝑀BTD
𝑡+1 = Id+𝛾𝑀BTD

𝑡 𝑃. (9.6.2)

The Bellman–Newton update (Definition 9.3) with learning rate 1 is

𝑀BN
𝑡+1 = 2𝑀BN

𝑡 −𝑀BN
𝑡 (Id−𝛾𝑃 )𝑀BN

𝑡 . (9.6.3)

We now relate the forward TD, backward TD, and Bellman–Newton updates to path
composition. For each algorithm, we prove by induction that at step 𝑡, there exists an integer 𝑛𝑡
such that (𝑀𝑡)𝑠𝑠′ is equal to the number of paths from 𝑠 to 𝑠′ with length at most 𝑛𝑡, weighted
by their probability and discounted by their length, namely,

(𝑀𝑡)𝑠𝑠′ =
∑︁

𝑝 path from 𝑠 to 𝑠′,|𝑝|⩽𝑛𝑡

𝛾|𝑝|P(𝑝) =
𝑛𝑡∑︁
𝑘=0

𝛾𝑘
∑︁

𝑠=𝑠0,...,𝑠𝑘−1,𝑠𝑘=𝑠′

𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛𝑡
(9.6.4)

where |𝑝| denotes the length of a path 𝑝 and P(𝑝) = 𝑃𝑠0𝑠1 · · ·𝑃𝑠𝑛−1𝑠𝑛 its probability in the
Markov process. Equivalently,

𝑀𝑡 =
∑︁

0⩽𝑘⩽𝑛𝑡

𝛾𝑘𝑃 𝑘. (9.6.5)

The three algorithms will differ by the value of 𝑛𝑡. This is formalized in the following theorem:

Theorem 9.6. For every 𝑡, we have:

𝑀TD
𝑡 =

∑︁
𝑝 path from 𝑠 to 𝑠′,|𝑝|⩽𝑡

𝛾|𝑝|P(𝑝)

𝑀BTD
𝑡 =

∑︁
𝑝 path from 𝑠 to 𝑠′,|𝑝|⩽𝑡

𝛾|𝑝|P(𝑝)

𝑀BN
𝑡 =

∑︁
𝑝 path from 𝑠 to 𝑠′,|𝑝|⩽2𝑡

𝛾|𝑝|P(𝑝)

Proof. For 𝑡 = 0, 𝑀0 = Id, and the induction hypothesis is satisfied.
If the end point of a path 𝑝1 corresponds to the starting point of a path 𝑝2, we denote 𝑝1 · 𝑝2 the

concatenation of the two paths.
For forward TD, we have 𝑀TD

𝑡+1 = Id+𝛾𝑃𝑀TD
𝑡 . By induction, if 𝑀TD

𝑡 =
∑︀

0⩽𝑘⩽𝑛TD
𝑡

𝛾𝑘𝑃𝑘, then we find

𝑀TD
𝑡+1 = Id+𝛾𝑃

∑︀
0⩽𝑘⩽𝑛TD

𝑡
𝛾𝑘𝑃𝑘 =

∑︀
0⩽𝑘⩽𝑛TD

𝑡 +1 𝛾
𝑘𝑃𝑘. Equivalently, looking at paths we have

(𝑀TD
𝑡+1)𝑠𝑠′ = 𝛿𝑠=𝑠′ + 𝛾(𝑃𝑀TD

𝑡 )𝑠𝑠′

= 𝛿𝑠=𝑠′ + 𝛾
∑︁
𝑠′′

𝑃𝑠𝑠′′
∑︁

𝑝 path from 𝑠′′ to 𝑠′, |𝑝|⩽𝑛TD
𝑡

𝛾|𝑝|P(𝑝)

= 𝛿𝑠=𝑠′ +
∑︁
𝑠′′

∑︁
𝑝 path from 𝑠′′ to 𝑠′, |𝑝|⩽𝑛TD

𝑡

𝛾|𝑝|+1P((𝑠, 𝑠′′) · 𝑝)

= 𝛿𝑠=𝑠′ +
∑︁

𝑝 path from 𝑠 to 𝑠′, 1⩽|𝑝|⩽𝑛TD
𝑡

𝛾|𝑝|P(𝑝)

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|⩽𝑛TD
𝑡 +1

𝛾|𝑝|P(𝑝)
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Thus the induction hypothesis is satisfied with 𝑛TD
𝑡+1 = 𝑛TD

𝑡 + 1. By induction, 𝑛TD
𝑡 = 𝑡: at step 𝑡, 𝑀TD

𝑡 is
the weighted sum of paths of length at most 𝑡. 𝑀TD

𝑡+1 is obtained from 𝑀TD
𝑡 by adding a transition to the left

to every known path (and re-adding the length-0 paths via the Id term).
Likewise, with backward TD we have

(𝑀BTD
𝑡+1 )𝑠𝑠′ = 𝛿𝑠=𝑠′ + 𝛾(𝑀BTD

𝑡 𝑃 )𝑠𝑠′

= 𝛿𝑠=𝑠′ +
∑︁
𝑠′′

∑︁
𝑝 path from 𝑠′′ to 𝑠′, |𝑝|⩽𝑛BTD

𝑡

𝛾|𝑝|+1P(𝑝 · (𝑠′′, 𝑠′))

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|⩽𝑛BTD
𝑡 +1

𝛾|𝑝|P(𝑝)

Contrary to forward TD, 𝑀BTD
𝑡+1 is obtained from 𝑀BTD

𝑡 by adding a transition to the right to every known
path. This still leads to 𝑛BTD

𝑡 = 𝑡.
We now consider the Bellman–Newton operator update. We have

𝑀BN
𝑡+1 = 2𝑀BN

𝑡 −𝑀BN
𝑡 (Id−𝛾𝑃 )𝑀BN

𝑡 .

Let us first compute (Id−𝛾𝑃 )𝑀BN
𝑡 . By the induction hypothesis and by the same reasoning as for forward

TD, we have

((Id−𝛾𝑃 )𝑀BN
𝑡 )𝑠𝑠′ =𝑀BN

𝑡 − 𝛾𝑃𝑀BN
𝑡

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|⩽𝑛BN
𝑡

𝛾|𝑝|P(𝑝)−
∑︁

𝑝 path from 𝑠 to 𝑠′, 1⩽|𝑝|⩽𝑛BN
𝑡 +1

𝛾|𝑝|P(𝑝)

= 𝛿𝑠=𝑠′ − 𝛾𝑛
BN
𝑡 +1

(︁
𝑃𝑛

BN
𝑡 +1

)︁
𝑠𝑠′

.

Therefore,

𝑀BN
𝑡+1 = 2𝑀BN

𝑡 −𝑀BN
𝑡 (Id−𝛾𝑃 )𝑀BN

𝑡

= 2𝑀BN
𝑡 −𝑀BN

𝑡 (Id−𝛾𝑛
BN
𝑡 +1𝑃𝑛

BN
𝑡 +1)

=𝑀BN
𝑡 + 𝛾𝑛

BN
𝑡 +1𝑀BN

𝑡 𝑃𝑛
BN
𝑡 +1

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|⩽𝑛BN
𝑡

𝛾|𝑝|P(𝑝) +
∑︁

𝑝 path from 𝑠 to 𝑠′, 𝑛BN
𝑡 +1⩽|𝑝|⩽2𝑛BN

𝑡 +1

𝛾|𝑝|P(𝑝)

=
∑︁

𝑝 path from 𝑠 to 𝑠′, |𝑝|⩽2𝑛BN
𝑡 +1

𝛾|𝑝|P(𝑝)

Therefore, 𝑛BN
𝑡+1 = 2𝑛BN

𝑡 + 1. At every step the Bellman–Newton operator update is doubling the maximal
length of all known paths.

9.7 Discussion: strengths and weaknesses of second-order
approaches

In a tabular setting, the SSIPE algorithm converges much faster than TD to compute the value
function, empirically.

However, this results in an 𝑂(|𝑆|2) cost per time step, so it is only interesting if sample
efficiency is the main issue. The alternative is to sample a few states 𝑠1 and 𝑠2 and only update
𝑀𝑠1𝑠2 for those states. But in practice, we have found that this introduces many instabilities
and requires reducing the learning rate so much (typically 𝜂 smaller than 1/ |𝑆|2) that the
benefit of second-order Newton convergence is lost. The same phenomenon is observed for the
parametric version of Theorem 9.5.

In Chapter 11, we will introduce algorithms for learning low-rank representations of the suc-
cessor states operator. These algorithms are related to Bellman–Newton methods (Section 11.5),
but with lower variance (Section 11.3.2).

In the next Chapter, we will prove a non-asymptotic convergence bound for SSIPE in the
tabular setting. Such an analysis is way to understand if there is room for improvement





Appendix

9.A Experimental details on the tabular experiments

Environments. In the tabular setting, we used three series of environments.
Environment in the first series are simple hand-designed mazes (see Figure 9.4b and Figure 9.4a for

environment examples, and Figure 9.1 for the tabular results). Since it is known that TD has a specific behavior
in reversible environments Ollivier (2018), we added non-reversible states: states from which it is possible to
move in only one direction. These are represented by the arrows in the figure.

Second, we generated more complicated mazes, using a generator of non-reversible mazes of width 𝑊 . 1

See Figure 9.4b for an example of such an environment, of width 8.
In these mazes, we use a uniform policy. The four possible actions are the four directions. If the chosen

action is not admissible (either it goes through a wall, or the agent is at a non-reversible state), the agent does
not move. If the action is possible, the agent moves in the chosen direction. In particular, in the non-reversible
states, only one action is admissible. We set the discount factor 𝛾 as a function of the mixing time of the process.
(The mixing time of a Markov chain with transition matrix 𝑃 is defined as 1

1−𝑢 where 𝑢 is the second largest
eigenvalue of 𝑃 .) We set 𝛾 such that 1

1−𝛾 is equal to the mixing time: this way, the discount factor stays close
to 1 for about as long as the initial state is not forgotten.

In each of these environments, we select once and for all a target state 𝑠 at random from the invariant
measure 𝜌, and set the reward to be nonzero at that state only. We set the reward value such that its expectation
under 𝜌 is 1. Thus, we set 𝑅 = 1

𝜌(𝑠)
1𝑠.

Finally, we considered the Torus and Circle environments. The torus environment was defined in section 9.3.
In the torus environment, we set gamma such that 1

1−𝛾 = 𝐿
2
. We also define an other simple variable-size

environment in order to study the effects of increased size: the circle environment of length 𝐿: 𝐶(𝐿). The
state space is {1, ..., 𝐿}; the transition matrix is 𝑃𝑙1,𝑙2 = 1

2
𝛿𝑙2=𝑙1+1 mod 𝐿 + 1

2
𝛿𝑙2=𝑙1 mod 𝐿. In the circle 𝐶(𝐿)

environment, we set gamma such that 1
1−𝛾 = 𝐿 (see figure 9.1c).

We sample a starting point according to the invariant distribution 𝜌, and a single random trajectory from
the process. We learn the value function and successor states online from this trajectory, using the following
algorithms.

Algorithms. In the tabular setting, we compare SSIPE, TD and TD(𝜆). For TD, at every step, when a
transition (𝑠, 𝑠′, 𝑟) is observed, the update is

𝑉 (𝑠)← 𝑉 (𝑠) + 𝜂𝑡(𝑟 + 𝛾𝑉 (𝑠′)− 𝑉 (𝑠))

1These mazes are built as follows. We first consider a square grid of width 𝑊 . The set of states 𝒮 is the
set of pairs 𝒮 = {(𝑖, 𝑗), 1 ⩽ 𝑖, 𝑗 ⩽𝑊}. We consider the grid as a torus: for every 1 ⩽ 𝑖 ⩽𝑊 , the state (1, 𝑖) is
adjacent to (𝑊, 𝑖) and the state (𝑖, 1) is adjacent to (𝑖,𝑊 ). We build the set of edges 𝐸 of the maze as follows.
For every pair of adjacent states (𝑠1, 𝑠2) we sample a single directed edge from among 𝑠1 → 𝑠2 or 𝑠2 → 𝑠1 (with
probability 1/2 each), and add it to the set of edges 𝐸. At this point, the graph (𝒮, 𝐸) is not strongly connected.
We then build the graph (𝑆, �̃�) of strongly connected components. 𝑆 is the set of strongly connected components
of (𝒮, 𝐸), and (𝑠1, 𝑠2) ∈ �̃� if and only if there is a state 𝑠1 ∈ 𝑠1, and a state 𝑠2 ∈ 𝑠2 such that (𝑠1, 𝑠2) ∈ 𝐸.
We say that two strongly connected components 𝑠1 and 𝑠2 are adjacent if there is a state 𝑠1 ∈ 𝑠1, and a state
𝑠2 ∈ 𝑠2 such that 𝑠1 and 𝑠2 are adjacent. The goal is then to make the graph (𝑆, �̃�) strongly connected, by
adding only edges between adjacent states, and by adding as few edges as possible. We consider the leaves of
the graph (𝑆, �̃�) (the states 𝑠 such that no edge is starting from 𝑠) and its roots (the states 𝑠 such that no edge
is arriving to 𝑠). For every leaf 𝑠, we consider the set of its adjacent states and add to �̃� the smallest number of
edges such that 𝑠 is connected to all of its adjacent states. We do a similar operation for roots. Finally, for every
new edge (𝑠1, 𝑠2) in �̃�, we consider the set of 𝑠1 ∈ 𝑠1 and 𝑠2 ∈ 𝑠2 such that 𝑠1 and 𝑠2 are adjacent, randomly
sample a transition (𝑠1, 𝑠2) uniformly from this set and add it to 𝐸. Finally, we check that the graph is strongly
connected. Hence, we get a random strongly connected graph. Finally, we consider the product of this graph
with a small size 4 grid.
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(a) Reversible torus of dimension 𝑑 = 1 (b) Non Reversible torus of dimension 𝑑 = 1

(c) Reversible torus of dimension 𝑑 = 2 (d) Non Reversible torus of dimension 𝑑 = 2

Figure 9.3: Parametric experiments: Learning the successor states operator 𝑀 with Forward
TD, Backward TD and SSIPE in the reversible and non reversible torus, for dimension 𝑑 = 1
and 𝑑 = 2.

with learning rate 𝜂𝑡. For TD(𝜆), we define the vector 𝑒𝑡 of eligibility traces. The update is given by:

𝑒← 𝑒+ 𝛾𝜆1𝑠

𝑉 ← 𝑉 + 𝜂𝑡(𝑟 + 𝛾𝑉 (𝑠′)− 𝑉 (𝑠))𝑒.

For TD and TD(𝜆), 𝑉 is initialized to 0. For SSIPE, 𝑃 is initialized to 0 (which corresponds to 𝑀 = Id) and 𝑅
is initialized to 0.

For SSIPE, there is no hyperparameter to tune.
For TD and TD(𝜆), we used learning rates schedules expressed as 𝜂𝑡 = 𝛽

𝑡+𝑡0
. This results two hyperparame-

ters for TD (𝛽 and 𝑡0) and three for TD(𝜆) (𝛽, 𝑡0, and 𝜆).
Since we tested TD and TD(𝜆) in a large number of environments, with different order of magnitudes of

number of states or different 𝛾, we had to find a reasonable scaling of the parameters 𝑡0 and 𝛽 with respect to
the number of states 𝑆 and 𝛾.

For TD, we observed that choosing 𝛽 = 𝑡0 = 𝑆
1−𝛾 always performs very well. More precisely, for a large

set of circle environments, torus environments, and mazes, we tested multiple 𝑡0 and 𝛽, and no other choice of
hyperparameter performed significantly better in these experiments than 𝛽 = 𝑡0 = 𝑆. Therefore, we used only
these hyperparameters in the reported results.

For TD(𝜆), we searched for a similar scaling of the hyperparameters, as a function of 𝛾, 𝑆, and 𝜆. We
observed that 𝛽 = 𝑡0 = 𝑆 1−𝛾𝜆

1−𝛾 always performs very well, which means that in the set of environment we tested,
for a fixed value of 𝜆, no other choice of 𝑡0 and 𝛽 performed significantly better. 2 Then, for every environment,
we tested multiple values of 𝜆 and selected the best one with cross validation. 3

2The value 𝑆 1−𝛾𝜆
1−𝛾 might not seem intuitive. It corresponds to the scaling of 𝛽 = 𝑡0 = 𝑆

1−𝛾 used for TD with
the scaling of the vector 𝑒 of eligibility traces. Indeed, the sum of the components of the eligibility trace is equal
to 1

1−𝛾𝜆 . In particular if 𝜆 = 0, this schedule coincides with TD’s schedule.
3In order to set 𝜆, we consider the characteristic time of TD(𝜆): 𝜏𝜆 = 1

1−𝛾𝜆 . Intuitively, 𝜏𝜆 is the number of
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(a) Small non reversible environment (b) Generated maze with a grid of width 8

Figure 9.4: Tabular environments, and the successor states for a given starting point.

For every environment, we run 5 experiments with TD with the schedule introduced above, and 5 experiments
with SSIPE. For TD(𝜆), 𝜆 is selected by cross-validation: we run 10 experiments for every value of 𝜆 as explained
above, then select the best 𝜆 with the first 5 runs, and report in the figure the performance on the remaining
5 runs. In the figure, we report the mean loss over the 5 loss, and a confidence interval corresponding to the
standard deviation estimated on the 5 runs.

The loss is the rescaled 𝐿1(𝜌) loss on the value function: (1− 𝛾)
∑︀
𝑠 𝜌(𝑠)|𝑉 (𝑠)− 𝑉 (𝑠)|. With this rescaled

loss, the loss at the initialization is exactly 1.
We refer to the main text for a discussion of the results.

9.B Additional experiments in a toy continuous environ-
ment: the low-dimensional torus.

Next, we considered a simple 𝑑-dimensional torus environment. A state in the torus is a 𝑑-tuple (𝜃1, ..., 𝜃𝑑) with
0 ⩽ 𝜃𝑖 < 1. We then define two random walks on the torus: a reversible and a non-reversible random walk. In the
reversible random walk, the next state 𝑠𝑡+1 is sampled from a starting point 𝑠𝑡 as 𝑠𝑡+1 = 𝑠𝑡 + 𝜎𝜀 mod 1, where
𝜀 is a random normally distributed vector of dimension 𝑑. In the non-reversible random walk, the next state is
sampled as 𝑠𝑡+1 = 𝑠𝑡 + 𝜎|𝜀| mod 1, where |𝑥| is the elementwise absolute value; this produces a directional drift.
In practice, we used 𝜎 = 0.05 and defined 𝛾 = 0.95.

We parametrize the state space as (cos(2𝜋𝜃1), sin(2𝜋𝜃1), ..., cos(2𝜋𝜃𝑑), sin(2𝜋𝜃𝑑)), so that a state is repre-
sented by 2𝑑 numbers. We learn 𝑀 with a MLP with 2 hidden layers (defined as for the continuous maze
environment) of width 512.

This is a continuous environment, so it is not possible to compute the error on 𝑀 by computing the true
successor state operator. Still, in dimension 𝑑 = 1 and 𝑑 = 2, we can compute an approximation of the true
successor state operator by choosing a discretization, computing the corresponding approximate transition
operator 𝑃 , and the approximate successor state operator 𝑀 . In practice, in dimension 𝑑 = 1 we used discretized
the environment to 100 states, and in dimension 𝑑 = 2 to 400 states. We learn 𝑀 with Forward TD, Backward
TD, and SSIPE. We use a single training trajectory (while we were using 64 parallel trajectories for the continuous
maze). At every step, we sample 128 additional states (𝑠1, 𝑠2) for Forward TD, Backward TD and SSIPE, from
a uniform distribution.

In dimension 1 and 2, Forward and Backward TD on 𝑀 are trained with the Adam optimizer with its
default hyperparameters, including the constant learning rate 10−3. In dimension 1, SSIPE is trained with
Adam with its default hyperparameters. In dimension 2, it is trained with Adam with a learning rate 10−4.

steps considered in the eligibility traces. Since 𝜆 ∈ [0, 1], we know that 𝜏𝜆 ∈ [1, 1
1−𝛾 ]. We parametrize 𝜏𝜆 as a

function of 𝜀 ∈ [0, 1]: 𝜏𝜆 = 1 + 𝜀( 1
1−𝛾 − 1). If 𝜀 = 0, then 𝜆 = 0. If 𝜀 = 1, then 𝜆 = 1. This parametrization

corresponds to 𝜆 = 𝜀
1−𝛾(1−𝜀) ). With this parametrization, by choosing 𝜀 uniformly in [0, 1] we obtain a range of

values of 𝜆 well suited to the environment; otherwise, the grid search for 𝜆 would have been much larger to cover
suitable values for every environment. For every environment, we tested values of 𝜀 in {1., .8, .6, .4, .2, .1, .01, .001}
and took the corresponding values of 𝜆.
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In Figure 9.3, we report the rescaled total variation error on 𝑀 , estimated on the state space discretization:
1
𝑁2

∑︀
𝑠1,𝑠2

|𝑚𝜃(𝑠1, 𝑠2)−𝑚(𝑠1, 𝑠2)|, where 𝑚(𝑠1, 𝑠2) is the “true” value of 𝑚 estimated on the discretization, as
discussed above.

In these small environments, Forward TD, Backward TD and SSIPE are all able to learn, but SSIPE is
always less sample efficient than Forward TD and Backward TD (Fig. 9.3).



Chapter 10

Non-asymptotic convergence bounds
for policy evaluation via SSIPE in
tabular setting

In this chapter, we provide non-asymptotic convergence bounds for the SSIPE algorithm defined
in Chapter 9. We then compare these bounds with known convergence bounds for TD.

The convergence of policy evaluation methods is a well-studied topic. Such an analysis can
be done for several observation models. The first one is via trajectories. In an ergodic process,
we observe an infinite trajectory 𝜏 = (𝑠0, 𝑟0, 𝑠1, 𝑟1, ...), with 𝑟𝑡 ∼ ℛ(.|𝑠𝑡) and 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡) for
every 𝑡. The second one is the i.i.d. observation model: we observe independent transitions
(𝑠𝑡, 𝑟𝑡, 𝑠

′
𝑡), with 𝑟𝑡 ∼ ℛ(.|𝑠𝑡) and 𝑠′𝑡 ∼ 𝑃 (.|𝑠𝑡). Typically, we can assume that for every 𝑡, 𝑠𝑡 ∼ 𝜌

where 𝜌 is the ergodic measure of the process. The i.i.d. model simplifies the theoretical analysis
as it removes the dependence between observations. Finally, the last one is the synchronous
observation model: at every step 𝑡, we observe a transition from every state 𝑠 ∈ 𝒮: formally at
step 𝑡, we observe the vector of states (𝑠′𝑡)

(𝑠)
𝑠∈𝒮 , where for every 𝑠 ∈ 𝒮, (𝑠′𝑡)𝑠 ∼ 𝑃 (d𝑠′|𝑠). This

last model again simplifies analysis, as it removes the issue of infrequently observed states.

The convergence of temporal difference was studied in these settings, in asymptotic (Tadić,
2004; Polyak and Juditsky, 1992; Jaakkola et al., 1994; Borkar and Meyn, 2000; Devraj and
Meyn, 2017; Tsitsiklis and Van Roy, 1997; Ueno et al., 2008; Tagorti and Scherrer, 2015) or
non-asymptotic regimes (Lakshminarayanan and Szepesvari, 2018; Bhandari et al., 2018; Srikant
and Ying, 2019; Dalal et al., 2018; Khamaru et al., 2020). In this chapter, we will only consider
the tabular setting, in which we estimate a vector 𝑉 ∈ R𝑆 . Additionally, Pananjady and
Wainwright (2019) studied the sample efficiency of the process estimation estimate (9.1.1),
(called the plug-in estimate in their setting) under the synchronous (or generative) observation
model, in a tabular setting. In the tabular case, the SSIPE approach corresponds to a very
specific case of the LSTD algorithm, whose sample efficiency was also studied in multiple
settings (Lazaric et al., 2012; Tagorti and Scherrer, 2015).

In the next section, we derive non-asymptotic convergence bounds for the SSIPE method
for policy evaluation, under the i.i.d. observation model, for the 𝐿1(𝜌) norm, where 𝜌 is the
ergodic measure of the process. The most interesting feature this new convergence bound is
that it does not depend on the number of states, or of the measure of infrequently visited states.
Hence the result is non-vacuous even if some states are almost-never observed, or for a very
large number of states, or even for a discrete infinite state space. Up to our knowledge, it is the
first convergence bound for policy evaluation which shows that we can provably learn the value
function in finite time, even with an arbitrarily large (or infinite) state space.

151
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10.1 Statement of the convergence bounds

We now introduce non-asymptotic convergence bounds for the process estimation method in
Theorem 10.1 and Theorem 10.2. The first ones introduced in Theorem 10.1 are slightly simpler
to understand. Their main interesting property is that they do not depend on properties of 𝜌,
especially on the measure of the most infrequently visited state inf𝑠 𝜌(𝑠): if some states are
only visited with probability 𝜀 and we take 𝜀→ 0, the bound is still non-vacuous. As discussed
afterwards in Section 10.2 with an example, it is not the case of known bounds for TD under
the i.i.d. observation model. This is a desirable result: if a state 𝑠 is almost never observed,
our estimate 𝑉 (𝑠) will be inaccurate. But since we consider the 𝐿1(𝜌) or 𝐿2(𝜌) norms which
weights the error in state 𝑠 with 𝜌𝑠, we could hope that this error would be controlled.

The second bounds introduced in Theorem 10.2 are stronger, and removes the dependence
in the number of states 𝑆, without any additional hypothesis on the distributions 𝜌 or on 𝑃 .
Hence, it is possible to learn the value function in finite time, with theoretical guarantees, in
the tabular setting, even with an infinite number of states.

We assume 𝜌 is the stationary distribution of the process 𝑃 . We consider the i.i.d observation
model: at every step 𝑡 ∈ N, we observe 𝑠∼ 𝜌, 𝑠′ ∼ 𝑃𝑠𝑠′ . We define the 𝐿1(𝜌) norm as:

‖𝑓‖𝐿1(𝜌) :=
∑︁
𝑠

𝜌(𝑠)|𝑓(𝑠)| = E𝑠∼𝜌 [|𝑓(𝑠)|] (10.1.1)

We consider a finite MRP with 𝑆 and 𝐸 edges ((𝑠, 𝑠′) is an edge if 𝑃𝑠𝑠′ > 0), and a bounded
reward.

We consider the SSIPE estimates 𝑉𝑡 and �̂�𝑡 defined in Theorem 9.1. These estimates
corresponds to estimates (𝑃 , �̂�) of the transition matrix 𝑃 and reward vector 𝑅 of the Markov
reward process, by direct empirical averages; then define �̂�𝑡 = (Id−𝛾𝑃𝑡)−1 and 𝑉𝑡 = �̂�𝑡�̂�𝑡.
The empirical averages 𝑃 and �̂� are updated for each new transition 𝑠→ 𝑠′ with reward 𝑟𝑠, by
updating the row 𝑠 of the transition matrix 𝑃 , and the value �̂�𝑠 at 𝑠:

𝑃𝑠𝑠2 ← (1− 1/𝑛𝑠)𝑃𝑠𝑠2 + (1/𝑛𝑠)1𝑠2=𝑠′∀𝑠2, (10.1.2)

�̂�𝑠 ← (1− 1/𝑛𝑠)�̂�𝑠 + (1/𝑛𝑠)𝑟𝑠 (10.1.3)

with 𝑛𝑠 the number of visits to state 𝑠 up to time 𝑡. We initialize to 𝑃0 = 0 and �̂�0 = 0. This
algorithm corresponds to the Plug-in estimate in (Pananjady and Wainwright, 2019) and is
similar to the LSTD algorithm (Bradtke and Barto, 1996; Geramifard et al., 2006), as explained
in the previous chapter.

Then we have the following first theorem.

Theorem 10.1. Consider a finite Markov reward process with 𝑆 states and 𝐸 edges , rewards
almost surely bounded by 𝑅max, and stationary distribution 𝜌. We consider the SSIPE updates
estimates �̂� and 𝑉 .

Then after 𝑡 i.i.d. observations (𝑠 ∼ 𝜌, 𝑠′ ∼ 𝑃𝑠𝑠′), with probability 1 − 𝛿, the estimates
�̂� = (Id−𝛾𝑃 )−1 and 𝑉 = �̂��̂� satisfy

‖�̂� −𝑀‖𝜌,TV ⩽
2𝛾

(1− 𝛾)2

√︂
2𝐸

𝑡
log

2

𝛿
(10.1.4)

and

‖𝑉 (𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽
3𝑅max

(1− 𝛾)2

√︂
2𝐸

𝑡
log

4𝑆

𝛿
. (10.1.5)

We observe that these convergence bounds are independent of 𝜌, and in particular of the
measure of almost never visited states. As discussed in Section 10.2, this is not the case in
standard bounds for policy evaluation under the i.i.d. observation model.

We now present a second convergence bound for �̂� and 𝑉 in the same setting (tabular,
i.i.d. observation model, SSIPE algorithm). The most interesting feature this new convergence
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bound on 𝑀 (equation (10.1.8)) is that it does not depend anymore on the number of states.
Hence, this bound is still non-vacuous for very large state spaces, or even infinite sets.

Our approach strongly relies on convergence bounds for learning discrete distributions with
potentially infinite support from Cohen et al. (2020). In their work, they introduce the quantity
Λ𝑡(𝑝), if 𝑝 is a probability distribution over a discrete (but potentially infinite) set 𝒮, as:

Λ𝑡(𝑝) :=
∑︁

𝑠|𝑝𝑠<1/𝑡

𝑝𝑡 +
1√
𝑡

∑︁
𝑠|𝑝𝑠⩾1/𝑡

√
𝑝𝑠 (10.1.6)

The sequence Λ𝑡(𝑝) is decreasing when 𝑡 increases, and we have Λ𝑡(𝑝) ⩾ 1√
𝑡
. If 𝒮 is finite, we

have Λ𝑡(𝑝) ⩽
√︁

𝑆
𝑡 (this bound is achieved for a uniform probability distribution). In a more

general case, even for an infinite set 𝒮 but if 𝑝 has a finite ‖.‖1/2 norm (‖𝑝‖1/2 =
(︀∑︀

𝑠∈𝒮
√
𝑝𝑠
)︀2,

then Λ𝑡 ⩽
√︁

‖𝑝‖1/2

𝑡 (the bound is achieved if 𝑡 ⩾ 1
inf𝑠 𝑝𝑠

). In the general case, the quantity Λ𝑡(𝑝)

is well defined even if ‖𝑝‖1/2 is infinite. Informally, it removes the issue of distributions with
infinite ‖.‖1/2 norm by almost ignoring states with probability less than 1

𝑡 , after 𝑡 observations.
We will use the notation Λ𝑡(𝜌𝑃 ), which is Λ𝑡 applied to 𝜌𝑃 seen as a probability distribution

over pair of states (𝑠, 𝑠′):

Λ𝑡(𝜌𝑃 ) =
∑︁

(𝑠,𝑠′)|𝜌𝑠𝑃𝑠𝑠′<1/𝑡

𝜌𝑠𝑃𝑠𝑠′ +
1√
𝑡

∑︁
(𝑠,𝑠′)|𝜌𝑠𝑃𝑠𝑠′⩾1/𝑡

√︀
𝜌𝑠𝑃𝑠𝑠′ (10.1.7)

Theorem 10.2. Consider a finite Markov reward process, rewards almost surely bounded
by 𝑅max, and stationary distribution 𝜌. Update 𝑃 and �̂� online via (10.1.2), initialized to
𝑃 = �̂� = 0.

Then after 𝑡 i.i.d. observations (𝑠 ∼ 𝜌, 𝑠′ ∼ 𝑃𝑠𝑠′), with probability 1 − 𝛿, the estimates
�̂� = (Id−𝛾𝑃 )−1 and 𝑉 = �̂��̂� satisfy

‖�̂� −𝑀‖𝜌,TV ⩽
2𝛾

(1− 𝛾)2

⎛⎝2Λ𝑡(𝜌𝑃 ) +

√︃
11 log 3

𝛿

𝑡

⎞⎠ (10.1.8)

and

‖𝑉 (𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽
𝑅max

(1− 𝛾)2

⎛⎝10Λ𝑡(𝜌𝑃 ) + 9

√︃
log 4

𝛿

𝑡

⎞⎠ (10.1.9)

We can briefly compare the two theorems 10.1 and 10.2. If we use Λ𝑡(𝜌𝑃 ) ⩽
√︁

𝐸
𝑡 in bounds

of Theorem 10.2, we recover results of the same order than the bounds in Theorem 10.1. Hence,
the bounds in Theorem 10.2 are strictly improving the bounds of Theorem 10.1, especially in
cases in which the probability distribution 𝜌𝑃 is far from uniform, and contain many states
with low-probability, or if the state space 𝒮 is infinite1. In particular, it shows we can learn the
value function in finite time, with theoretical guarantees, even in an arbitrarily large or infinite
state space.

In the next section, we compare these results with other known convergence bounds for
policy evaluation.

10.2 A discussion of Theorem 10.1 and 10.2 and comparison
with related works

We now discuss the Theorems 10.1 and 10.2 compared to two results:
1The case of the tabular model in an infinite state space is irrelevant in practice, but it is mathematically

interesting to observe that we can perform policy evaluation in a finite time, with theoretical guarantees, even
with an infinite state space. Formally, at step 𝑡, the matrix (Id−𝛾𝑃 ) is equal to Id, except on a finite sub-matrix.
Hence, we can compute (Id−𝛾𝑃 )−1, as it only requires to inverse the finite sub-matrix not equal to Id
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• The finite-time convergence bound for Temporal Difference in (Bhandari et al., 2018),
which uses the same data sampling model as ours, but for Temporal Difference, and for
the 𝐿2(𝜌) norm instead of the 𝐿1(𝜌) norm.

• The finite-time convergence result for the Plug-in estimate in (Pananjady and Wainwright,
2019). Their algorithm is strictly equivalent to SSIPE, but the data sampling strategy is
different, and the result is for the 𝐿∞ norm instead of the 𝐿1(𝜌) norm.

10.2.1 A discussion of Theorem 10.1 compared to TD convergence
bound

In their analysis, (Bhandari et al., 2018) consider Linear TD, which is more general than our
approach. We consider the specific case of their Theorem 2.c, applied to a tabular model, which
is a specific case of the linear model. They consider the following TD update: When observing
a transition (𝑠𝑡, 𝑟𝑡, 𝑠

′
𝑡) with 𝑟𝑡 ∼ ℛ(.|𝑠𝑡) and 𝑠′𝑡 ∼ 𝑃 (d𝑠′|𝑠𝑡), we update 𝑉 as:

𝑉 (𝑠𝑡)← (1− 𝛼𝑡)𝑉 (𝑠𝑡) + 𝛼𝑡(𝑟𝑡 + 𝛾𝑉 (𝑠′𝑡)) (10.2.1)

with 𝛼𝑡 =
𝛽
𝜆+𝑡 with 𝛽 = 2

(1−𝛾)𝜔 , 𝜆 = 16
(1−𝛾)2𝜔 and 𝜔 =

√︀
inf𝑠 𝜌(𝑠). In that case, we can apply

their Theorem 2.c.2 to the tabular TD update: if 𝑉𝑡 is the estimate after 𝑡 i.i.d. observation,
we have:

E
[︁
‖𝑉 𝜋 − 𝑉𝑡‖2𝐿2(𝜌)

]︁
⩽

1

(1− 𝛾)2
𝜈

𝜆+ 𝑡
(10.2.4)

where

𝜈 = max

{︃
8𝛾2‖𝜎𝑉 ‖2𝐿2(𝜌)

inf𝑠 𝜌(𝑠)
,
16 ‖𝑉 𝜋 − 𝑉0‖2𝐿2(𝜌)√︀

inf𝑠 𝜌(𝑠)

}︃
(10.2.5)

and 𝜎𝑉 ∈ R𝑆 is the vector of variances of the true value at the next step 𝑠′ for every 𝑠:

𝜎2
𝑉 (𝑠) := Var𝑠′∼𝑃 (d𝑠′|𝑠)(𝑉

𝜋(𝑠′)) (10.2.6)

Our main remark is on the dependence in 𝜌. Indeed, in our analysis of the SSIPE estimates
in Theorems 10.1 and 10.2, the result do not depend on properties of 𝜌, especially on the
measure of the most infrequently visited state inf𝑠 𝜌(𝑠). This is an interesting property. It
means that adding an almost-never-visited state does not damage the policy evaluation in the
environment. On the contrary, with the bound for TD with norm 𝐿2(𝜌) (10.2.4), if a state has
low measure 𝜌(𝑠), it can hurt the guarantee we have on our estimate, even though the norm
𝐿2(𝜌) is weighting the loss with respect to 𝜌. For instance, consider the 3-states MDP defined
in Figure 10.1 with deterministic reward 𝑅(𝐴) = 0, 𝑅(𝐵) = 1 and 𝑅(𝐵′) = −1. Then the value
function can be computed exactly and is 𝑉 (𝐴) = 0, 𝑉 (𝐵) = 1 and 𝑉 (𝐵′) = −1, and we have
‖𝜎𝑉 ‖2𝐿2(𝜌)

= (1−𝜀)
2 . For simplicity, we take 𝑉0 = 0. Therefore, for fixed 𝛾, when 𝜀→ 0, 𝑡→∞,

the bound (10.2.4) becomes asymptotically:

E
[︁
‖𝑉 𝜋 − 𝑉𝑡‖2𝐿2(𝜌)

]︁1/2
⩽ 𝑂𝜀→0,𝑡→∞

(︂
1√
𝜀𝑡

)︂
(10.2.7)

2Here is how we derive the tabular case of the Theorem 2.c in (Bhandari et al., 2018). We keep their notation
for simplicity. For every state 𝑠, the feature vector 𝜙(𝑠) in the tabular model is 𝛼(𝑠)1𝑠, where 𝛼(𝑠) ∈ R is a
scaling factor. Because of their assumption on feature regularity, requiring ‖𝜙(𝑠)‖2 ⩽ 1, we have:

‖𝜙(𝑠)‖22 = 𝛼(𝑠)21⊤𝑠Σ1𝑠 (10.2.2)

= 𝛼(𝑠)2𝜎𝑠𝑠 = 𝛼(𝑠)4𝜌(𝑠) ⩽ 1 (10.2.3)

where 𝜋(𝑠) in the original paper corresponds to 𝜌(𝑠) in this text. Therefore, we take: 𝛼(𝑠) = 𝜌(𝑠)−1/2, and we
have Σ = Diag(𝜌1/2), with 𝜔 the minimum eigenvalue of Σ: 𝜔 =

√︀
inf𝑠 𝜌(𝑠). Then, we can apply the theorem
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𝐴

𝐵 𝐵′

𝜀

(1− 𝜀)/2 (1− 𝜀)/2

𝜀

(1− 𝜀)/2

(1− 𝜀)/2

𝜀

(1− 𝜀)/2
(1− 𝜀)/2

Figure 10.1: A 3-states Markov Process with parameter 𝜀. The state 𝐴 is repulsive, and its
ergodic measure is 𝜀. The states 𝐵 and 𝐵′ are symmetric and their ergodic measure are (1−𝜀)/2

On the contrary, in the same MRP, the bounds in Theorems 10.1 and 10.2 becomes, for a
fixed 𝛾 and with fixed probability 1− 𝛿:

‖𝑉𝑡(𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽ 𝑂𝜀→0,𝑡→∞

(︂
1√
𝑡

)︂
. (10.2.8)

Hence, with this example, we see that taking 𝜀 very small makes the theoretical bound given by
the bound obtained in (Bhandari et al., 2018) vacuous. This is true for other sample efficiency
bounds for policy evaluation, such as (Lazaric et al., 2012; Tagorti and Scherrer, 2015) in the
case of LSTD, even though these bounds are tighter with respect to other parameters of the
environment. On the contrary, our bounds in in Theorems 10.1 and 10.2 are invariant to 𝜀,
hence still gives a theoretical guarantee when 𝜀 is small. This is a desirable result: if a state 𝑠
is almost never observed, our estimate 𝑉 (𝑠) will be inaccurate, but because we study 𝐿1(𝜌) or
𝐿2(𝜌) norms which weights the error in state 𝑠 with 𝜌𝑠, this error is 𝑠 should be controlled.

Similarly, if we add a large number 𝑆′ of almost never visited states (such that 𝜌𝑠 ⩽ 𝜀/𝑆′) and
consider 𝑆′ →∞, the bounds in Theorem 10.2 are still non-vacuous, while bounds in (Bhandari
et al., 2018) or even in Theorem 10.1 are vacuous.

In these case, we thus show that we can provably learn the value function, in finite time,
with theoretical guarantees, even with arbitrarily large or infinite state spaces.

We can now compare the bounds with respect to 𝛾. For a fixed finite MDPℳ, when 𝛾 → 1,
𝑡→∞, the bound (10.2.4) becomes asymptotically:

E
[︁
‖𝑉 𝜋 − 𝑉𝑡‖2𝐿2(𝜌)

]︁1/2
⩽ 𝑂𝛾→1,𝑡→∞

(︂‖𝜎𝑉 ‖𝐿2(𝜌)

(1− 𝛾)
√
𝑡

)︂
(10.2.9)

and we consider inf𝑠 𝜌(𝑠) as a constant here. On the contrary, the bound in Theorem 10.1 is

‖𝑉𝑡(𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽ 𝑂𝛾→1,𝑡→∞

(︂
1

(1− 𝛾)2
√
𝑡

)︂
. (10.2.10)

In the worst case, ‖𝜎𝑉 ‖𝐿2(𝜌) is of order 1
1−𝛾 (because 𝑉 is of order at most 𝑅max/(1− 𝛾) and

𝜎𝑉 is the state-wise variance of the value function at the next step). In that case, the two
bounds have the same order of magnitude. But ‖𝜎𝑉 ‖𝐿2(𝜌) can be of order 1, as in the 3-state
process introduced above. Hence the bound obtained in (Bhandari et al., 2018) handles some
of the structure of the environment and can be tighter with respect to 𝛾.

There are three main differences between the bounds (10.1.5) and (10.2.4): the algorithms
(SSIPE and TD), the norms (𝐿1(𝜌) and 𝐿2(𝜌)), and the proof techniques we use to derive the
bounds. Therefore, the conclusion of this discussion is unclear. Would it be possible to derive a
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bound for TD for the 𝐿2(𝜌) norm, which would not depend on inf𝑠 𝜌𝑠? If it is not, is it because
of the TD algorithm itself? Or would any policy evaluation method in the 𝐿2(𝜌) depend on
inf𝑠 𝜌𝑠 because this norms gives too much weight to errors in infrequently visited states? These
questions would be interesting directions for future works.

10.2.2 A discussion of Theorem 10.1 compared to (Pananjady and
Wainwright, 2019)

The plug-in estimate studied by (Pananjady and Wainwright, 2019) is equivalent to the SSIPE
algorithm defined in Chapter 9. Their data sampling model is not the same as ours: they use
the synchronous data sampling model: at every step, a transition starting from every state is
observed. This model is less realistic than the i.i.d model used for the bounds in Theorem 10.1
and Theorem 10.2, as well as (10.2.4). It naturally removes the issue of infrequently observed
states, and allow a more precise analysis of the convergence rate. We consider the ‖.‖∞ norn
defined as ‖𝑥‖∞ = sup𝑠 |𝑥𝑠|. Then, their Theorem 1.b is: with probability 1− 𝛿, the ‖.‖∞ error
is:

‖𝑉𝑡(𝑠)− 𝑉 𝜋(𝑠)‖∞ ⩽ 𝑂𝑡→∞

(︃√︂
𝑆 log(𝑆/𝛿)

𝑡
‖𝑀𝜎𝑉 ‖∞

)︃
. (10.2.11)

where 𝑡 is not number of observed transitions (with the synchronous model, at every step we
observed 𝑆 transitions) and where 𝜎𝑉 (𝑠) := Var𝑠′∼𝑃 (d𝑠′|𝑠)(𝑉

𝜋(𝑠′)) as already introduced above.
We simplified their statement to highlight the most important part of the bound. Because
of the synchronous observation model, there is no issue for handling state with almost never
observed in the process. Still, this bound cannot handle infinite state space 𝒮, while our bounds
in Theorem 10.2 can.

Informally, we can compare the factors in the 𝑂( 1√
𝑡
) term. Pananjady and Wainwright

(2019) obtain a factor ‖𝑀𝜎𝑉 ‖∞. Both 𝑀 and 𝜎𝑉 can be of order 1
1−𝛾 , hence the factor

‖𝑀𝜎𝑉 ‖∞ can be of order 1
(1−𝛾)2 at most, but can be much smaller is some cases. On the

contrary, in our bound (10.1.5), the corresponding factor is 1
(1−𝛾)2 .

10.3 Proof of convergence bounds

We now prove Theorem 10.1 and Theorem 10.2. This convergence analysis is partially inspired
by (Pananjady and Wainwright, 2019). The main differences are the data model and the metrics
computed. The main results used to go from Theorem 10.1 to Theorem 10.2 is the study of
discrete distributions with infinite support estimation by Cohen et al. (2020).

10.3.1 Proof of Theorem 10.1
Proof. We assume that 𝜌 is an invariant probability measure of 𝑃 , and that the reward is bounded by 𝑅max

with probability 1. We define the empirical distribution of states 𝜌𝑡 as: (𝜌𝑡)𝑠 = 𝑛𝑠
𝑡

, with 𝑛𝑠 the number of
visits to state 𝑠 up to time 𝑡. We also consider 𝑃𝑡 and �̂�𝑡 as defined in (10.1.2).

The initialization of 𝑃 and �̂� does not matter, as it is erased the first time a state is visited. To fix
ideas, we initialize 𝑃 and �̂� to 0; this helps if 𝜌 = 0 for some states. (In particular, 𝑃 may be substochastic:
0 ⩽

∑︀
𝑗 𝑃𝑖𝑗 ⩽ 1 for all 𝑖.)

We define ̂︁𝜌𝑃 𝑡 as the empirical distribution of transitions: (̂︁𝜌𝑃 𝑡)𝑠1𝑠2 :=
𝑛𝑠1𝑠2
𝑡

where 𝑛𝑠1𝑠2 is the number
of observations of a transition (𝑠1, 𝑠2) up to time 𝑡. We have (𝑃𝑡)𝑠1𝑠2 =

𝑛𝑠1𝑠2
𝑛𝑠1

if 𝑛𝑠1 > 0, or 0 if 𝑛𝑠1 = 0.

Hence
(︁̂︁𝜌𝑃 𝑡)︁

𝑠1𝑠2
= 𝜌𝑠1 (𝑃𝑡)𝑠1𝑠2 .

The proof strategy is to bound the errors ‖�̂� −𝑀‖𝜌,TV and ‖𝑉 − 𝑉 ‖𝜌 by errors on ̂︁𝜌𝑃 and �̂�. The error
on ̂︁𝜌𝑃 can then be controlled by concentration inequalities on empirical distributions, and the error on �̂� can
be bounded via the Hoeffding inequality.
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The successor state operator estimate �̂� is (Id−𝛾𝑃 )−1. By the Bellman equation for 𝑀 and �̂� ,

�̂� −𝑀 = 𝛾𝑃�̂� − 𝛾𝑃𝑀

= 𝛾𝑃 (�̂� −𝑀) + 𝛾(𝑃 − 𝑃 )�̂�

and therefore
(Id−𝛾𝑃 )(�̂� −𝑀) = 𝛾(𝑃 − 𝑃 )�̂�

and thus
�̂� −𝑀 = 𝛾𝑀(𝑃 − 𝑃 )�̂�

by definition of 𝑀 .
Therefore,

‖�̂� −𝑀‖𝜌,TV = 𝛾‖𝑀(𝑃 − 𝑃 )�̂�‖𝜌,TV

=
𝛾

2

∑︁
𝑖,𝑗

𝜌𝑖

⃒⃒⃒⃒
⃒⃒∑︁
𝑘,𝑙

𝑀𝑖𝑘(𝑃 − 𝑃 )𝑘𝑙�̂�𝑙𝑗

⃒⃒⃒⃒
⃒⃒

⩽
𝛾

2

∑︁
𝑖,𝑗,𝑘,𝑙

𝜌𝑖𝑀𝑖𝑘|𝑃 − 𝑃 |𝑘𝑙�̂�𝑙𝑗 .

We know that (1 − 𝛾)𝑀 is a stochastic matrix, and 𝜌 is an invariant probability measure. Therefore,∑︀
𝑖 𝜌𝑖𝑀𝑖𝑘 = 1

1−𝛾 𝜌𝑘. Moreover, if 𝑃 is sub-stochastic,
∑︀
𝑗 �̂�𝑙𝑗 ⩽ 1

1−𝛾 (with equality if 𝑃 is stochastic).
Therefore,

‖�̂� −𝑀‖𝜌,TV ⩽
𝛾

(1− 𝛾)2
‖𝑃 − 𝑃‖𝜌,TV. (10.3.1)

We define (𝜌𝑃 ) as the matrix Diag(𝜌)𝑃 . We now bound the error ‖𝑃 − 𝑃‖𝜌,TV by the error ‖̂︁𝜌𝑃 − (𝜌𝑃 )‖TV,
in order to use standard concentration inequalities on empirical distributions:

‖𝑃 − 𝑃‖𝜌,TV =
1

2
‖Diag(𝜌)𝑃 − (𝜌𝑃 )‖1

⩽ ‖̂︁𝜌𝑃 − (𝜌𝑃 )‖TV +
1

2
‖Diag(𝜌− 𝜌)𝑃‖1

⩽ ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV + ‖𝜌− 𝜌‖TV

⩽ ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV +
1

2

∑︁
𝑖

|
∑︁
𝑗

𝜌𝑖𝑃𝑖𝑗 − 𝜌𝑖𝑃𝑖𝑗 |

⩽ ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV +
1

2

∑︁
𝑖,𝑗

|𝜌𝑖𝑃𝑖𝑗 − 𝜌𝑖𝑃𝑖𝑗 |

⩽ 2‖̂︁𝜌𝑃 − 𝜌𝑃‖TV

Therefore,

‖�̂� −𝑀‖𝜌,TV ⩽
2𝛾

(1− 𝛾)2
‖̂︁𝜌𝑃 − 𝜌𝑃‖TV. (10.3.2)

We now consider the error on 𝑉 .
We have:

‖𝑉 − 𝑉 ‖𝜌 = ‖�̂��̂�−𝑀𝑅‖𝜌
⩽ ‖(�̂� −𝑀)�̂�‖𝜌 + ‖𝑀(�̂�−𝑅)‖𝜌

⩽ 2𝑅max‖�̂� −𝑀‖𝜌,TV +
1

1− 𝛾
‖�̂�−𝑅‖𝜌

⩽
4𝑅max

(1− 𝛾)2
‖̂︁𝜌𝑃 − 𝜌𝑃‖TV +

1

1− 𝛾
‖ ̂︀𝑅−𝑅‖𝜌 (10.3.3)

We now bound ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV and ‖ ̂︀𝑅−𝑅‖𝜌.
We can bound the error ‖ ̂︀𝑅 − 𝑅‖𝜌 with the Hoeffding inequality. ̂︀𝑅𝑠 is the average of 𝑛𝑠 independent

samples of expectation 𝑅𝑠. Since the reward is bounded by 𝑅𝑚𝑎𝑥 with probability 1, we can use Hoeffding’s
inequality. For any 𝑠 with 𝑛𝑠 > 0, we have:

P(| ̂︀𝑅−𝑅|𝑠 > 𝑢) ⩽ 2 exp

(︂
−
𝑛𝑠𝑢2

2𝑅2
max

)︂
Hence, for any 𝑠 with 𝑛𝑠 > 0, we have with probability 1− 𝛿

𝑆
:

|̂︁𝑅𝑡 −𝑅|𝑠 ⩽ 𝑅max

√︃
2

𝑛𝑠
log

2𝑆

𝛿
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and since 𝜌𝑠 = 𝑛𝑠/𝑡, this rewrites as

𝜌𝑠|̂︁𝑅𝑡 −𝑅|𝑠 ⩽
𝑅max

𝑡

√︂
2𝑛𝑠 log

2𝑆

𝛿
. (10.3.4)

For states with 𝑛𝑠 = 0, 𝜌𝑠 = 0 and the inequality still holds. If for all 𝑠, P(|̂︁𝑅𝑡 −𝑅|𝑠 ⩾ 𝜀𝑠) ⩽ 𝛿
𝑆

, then

P(‖�̂�−𝑅‖𝜌 ⩾
∑︁
𝑠

𝜀𝑠) ⩽
∑︁
𝑠

P(𝜌𝑠|̂︁𝑅𝑡 −𝑅|𝑠 ⩾ 𝜀𝑠)

⩽
∑︁
𝑠

𝛿

𝑆
= 𝛿

Thus, with probability 1− 𝛿,

‖ ̂︀𝑅−𝑅‖𝜌 ⩽
𝑅max

𝑡

√︂
2 log

2𝑆

𝛿

∑︁
𝑠

√
𝑛𝑠

⩽
𝑅max

𝑡

√︂
2 log

2𝑆

𝛿

√︃∑︁
𝑠

𝑛𝑠
√
𝑆

⩽
𝑅max√

𝑡

√︂
2𝑆 log

2𝑆

𝛿
(10.3.5)

since
∑︀
𝑠 𝑛𝑠 = 𝑡.

We now bound ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV. ̂︁𝜌𝑃 is the empirical distribution over all possible transitions. The set of all
possible transitions is of size 𝑆2. However, if (𝜌𝑃 )𝑠1𝑠2 = 0, then with probability 1, ̂︁𝜌𝑃 𝑠1𝑠2 = 0. Therefore, if

𝐸 is the number of edges of the MDP ((𝑠, 𝑠′) is an edge if 𝑃𝑠𝑠′ > 0), ‖̂︁𝜌𝑃 − 𝜌𝑃‖TV can be bounded by an
inequality on the total variation error of the empirical measure on a set of size 𝐸. We use Theorem 2.2 from
(Weissman et al., 2003)a, and have with with probability 1− 𝛿:

‖̂︁𝜌𝑃 𝑡 − 𝜌𝑃‖TV ⩽
1

2
√
𝑡

√︂
2𝐸 log

2

𝛿
(10.3.6)

By plugging equation (10.3.6) into (10.3.2), with probability 1− 𝛿,

‖�̂� −𝑀‖𝜌,TV ⩽
𝛾

(1− 𝛾)2
√
𝑡

√︂
2𝐸 log

2

𝛿

Finally, by plugging (10.3.5) and (10.3.6) into (10.3.3), with probability 1− 𝛿, we obtain

‖𝑉 − 𝑉 ‖𝜌 ⩽
2𝑅max

(1− 𝛾)2
1
√
𝑡

√︂
2𝐸 log

4

𝛿
+

1

1− 𝛾
𝑅max√

𝑡

√︂
2𝑆 log

4𝑆

𝛿

⩽
3𝑅max

(1− 𝛾)2

√︂
2𝐸

𝑡
log

4𝑆

𝛿

which ends the proof.

aWe use the trivial bound 𝜙(𝜋) ⩾ 2 with the notation of the original paper.

These bounds do not depend on the sampling measure 𝜌, although the norm used to define
the error does. Thus, rarely visited points have no impact on these bounds.

10.3.2 Proof of Theorem 10.2
Proof. From (10.3.2), we know that:

‖�̂� −𝑀‖𝜌,TV ⩽
2𝛾

(1− 𝛾)2
‖̂︁𝜌𝑃 − 𝜌𝑃‖TV

We now use Theorem 2.1 in (Cohen et al., 2020). With probability at least 1− 𝛿, we have:

‖̂︁𝜌𝑃 − 𝜌𝑃‖TV ⩽ Φ𝑡(̂︁𝜌𝑃 𝑡) + 3

√︃
log 2

𝛿

2𝑡
(10.3.7)

where Φ𝑡 is defined in (Cohen et al., 2020). And from Theorem 2.3 in (Cohen et al., 2020), we now that with
probability at least 1− 𝛿:

Φ𝑡(̂︁𝜌𝑃 𝑡) ⩽ 2Λ𝑡(𝜌𝑃 ) +

√︂
log(1/𝛿)

𝑡
(10.3.8)
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Hence, using (10.3.7) with probability 2𝛿/3 and (10.3.8) with probability 𝛿/3, we have with probability 1− 𝛿:

‖̂︁𝜌𝑃 − 𝜌𝑃‖TV ⩽ 2Λ𝑡(𝜌𝑃 ) +

(︂
1 +

3
√
2

)︂√︃
log 3

𝛿

𝑡

Therefore, we can conclude:

‖�̂� −𝑀‖𝜌,TV ⩽
4𝛾

(1− 𝛾)2
Λ𝑡(𝜌𝑃 ) +

2𝛾

(1− 𝛾)2

√︃
10 log 3

𝛿

𝑡
(10.3.9)

We now bound the reward error. For now, we will consider 𝜌 and the sequence of observed states
𝑠 := (𝑠1, ..., 𝑠𝑡) fixed. We first bound E𝑟1,...,𝑟𝑡

[︁
‖�̂�−𝑅‖𝐿1(𝜌)

⃒⃒⃒
𝑠], then we will concentrate conditionally to

the sequence the error ‖�̂�−𝑅‖𝐿1(𝜌).
We have:

E𝑟1,...,𝑟𝑡
[︁
‖�̂�−𝑅‖𝐿1(𝜌)|𝑠

]︁
=

∑︁
𝑠|𝑛𝑠>0

𝜌𝑠E𝑟1,...,𝑟𝑡
[︁
|�̂�𝑡 −𝑅|𝑠

]︁

⩽
∑︁

𝑠|𝑛𝑠>0

𝜌𝑠

√︂
E𝑟1,...,𝑟𝑡

[︁
(�̂�𝑡 −𝑅𝑠)2𝑠

]︁
⩽

∑︁
𝑠|𝑛𝑠>0

𝜌𝑠
1
√
𝑛𝑠
𝑅max

= 𝑅max
1
√
𝑡

∑︁
𝑠

√︀
𝜌𝑠

⩽ 𝑅maxΦ𝑡(𝜌)

We now use MacDiarmid’s inequality to concentrate ‖�̂�−𝑅‖𝐿1(𝜌) around its mean, knowing 𝑠 := (𝑠1, ..., 𝑠𝑡).
We consider the function 𝑓(𝑟1, ..., 𝑟𝑡) = ‖�̂�−𝑅‖𝐿1(𝜌), where �̂� is the empirical model of the rewards after
observing 𝑟1, ..., 𝑟𝑡 in states (𝑠1, ..., 𝑠𝑡). We have:

|𝑓(𝑟1, ..., 𝑟𝑖−1, 𝑟, 𝑟𝑖+1, ..., 𝑟𝑡)− 𝑓(𝑟1, ..., 𝑟𝑖−1, 𝑟
′, 𝑟𝑖+1, ..., 𝑟𝑡)| = (10.3.10)

= 𝜌𝑠|�̂�(𝑟1, ..., 𝑟𝑖−1, 𝑟, 𝑟𝑖+1, ..., 𝑟𝑡)−𝑅𝑠| − 𝜌𝑠|�̂�(𝑟1, ..., 𝑟𝑖−1, 𝑟
′, 𝑟𝑖+1, ..., 𝑟𝑡)−𝑅𝑠| (10.3.11)

⩽ 𝜌𝑠
2𝑅max

𝑛𝑠
=

2𝑅max

𝑡
(10.3.12)

Hence, using MacDiarmid’s inequality, for any 𝜀 > 0:

P
(︁
‖�̂�−𝑅‖𝐿1(𝜌) − E𝑟1,...,𝑟𝑡

[︁
‖�̂�−𝑅‖𝐿1(𝜌)|𝑠

]︁
> 𝜀|𝑠

)︁
⩽ exp

⎛⎜⎝− 2𝜀2∑︀
1⩽𝑖⩽𝑡

(︁
2𝑅max
𝑡

)︁2
⎞⎟⎠ (10.3.13)

= exp

(︂
−

𝑡𝜀2

2𝑅2
max

)︂
(10.3.14)

Hence, with fixed 𝑠, we have with probability at least 1− 𝛿 that:

‖�̂�−𝑅‖𝐿1(𝜌) ⩽ E𝑟1,...,𝑟𝑡
[︁
‖�̂�−𝑅‖𝐿1(𝜌)|𝑠

]︁
+𝑅max

√︂
2 log(1/𝛿)

𝑡
(10.3.15)

= 𝑅maxΦ𝑡(𝜌𝑡) +𝑅max

√︂
2 log(1/𝛿)

𝑡
(10.3.16)

Because, this bound is independant of 𝑠, it is true in expectation with respect to 𝑠. Moreover, we have
Φ𝑡(𝜌) ⩽ Φ𝑡(̂︁𝜌𝑃 ), indeed:

Φ𝑡(𝜌) =
1
√
𝑡

∑︁
𝑠

√︀
𝜌𝑠 =

1
√
𝑡

∑︁
𝑠

√︃∑︁
𝑠′

̂︁𝜌𝑃 𝑠𝑠′ ⩽ 1
√
𝑡

∑︁
𝑠𝑠′

√︁̂︁𝜌𝑃 𝑠𝑠′ (10.3.17)

Hence, we have:

‖�̂�−𝑅‖𝐿1(𝜌) = 𝑅maxΦ𝑡(̂︁𝜌𝑃 𝑡) +𝑅max

√︂
2 log 1/𝛿

𝑡
(10.3.18)

From (10.3.3) we have:

‖𝑉𝑡 − 𝑉 ‖𝐿1(𝜌) ⩽
4𝑅max

(1− 𝛾)2
‖̂︁𝜌𝑃 − 𝜌𝑃‖TV +

1

1− 𝛾
‖ ̂︀𝑅−𝑅‖𝜌 (10.3.19)
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Hence, using (10.3.18) with 𝛿/3 and (10.3.7) with 2𝛿/3, we have with probability 1− 𝛿:

‖𝑉𝑡 − 𝑉 ‖𝐿1(𝜌) ⩽
4𝑅max

(1− 𝛾)2

⎛⎝Φ𝑡(̂︁𝜌𝑃 𝑡) + 3

√︃
log 3

𝛿

2𝑡

⎞⎠+
𝑅max

1− 𝛾

(︃
Φ𝑡(̂︁𝜌𝑃 𝑡) +√︂2 log 3/𝛿

𝑡

)︃
(10.3.20)

=
5𝑅max

(1− 𝛾)2

⎛⎝Φ𝑡(̂︁𝜌𝑃 𝑡) +
√︃

log 3
𝛿

2𝑡

⎞⎠ (10.3.21)

Moreover, we know that with probability 1− 𝛿 (already used in (10.3.8))

Φ𝑡(̂︁𝜌𝑃 𝑡) ⩽ 2Λ𝑡(𝜌𝑃 ) +

√︂
log(2/𝛿)

𝑡
(10.3.22)

Hence, using this bound with 𝛿/4 and (10.3.20) with 3𝛿/4, we have with probability at least 1− 𝛿:

‖𝑉𝑡 − 𝑉 ‖𝐿1(𝜌) ⩽
𝑅max

(1− 𝛾)2

⎛⎝10Λ𝑡(𝜌𝑃 ) + 9

√︃
log 4

𝛿

𝑡

⎞⎠ (10.3.23)



Chapter 11

Matrix Factorization and the
Forward-Backward (FB)
Representation

In this chapter, we introduce bilinear models for the successor states operator, which learn a
low-rank approximation. In Section 11.1 we introduce these parametrizations, and discuss the
low rank hypothesis for the successor states operator in n Section 11.2. In Section 11.3 we
study temporal difference algorithms for the low rank models, and show how to derive lower
variance methods. Then, in Section 11.4 we study the fixed points of these methods and show a
relation between the fixed points of this method and the SVD. This statement is necessary but
not sufficient to show that the algorithm will converge to the optimal low-rank representation.
In practice, we observe that this algorithm converges to the optimal low-rank representation of
the successor state operator in simple environments.

The learned representations might be used in other methods. Indeed, representation learning
has been an active field in RL. States (or state-actions) representations can be used directly as
input of a more simple policy (Ha and Schmidhuber, 2018; Stooke et al., 2021), used to derive
a bonus for exploration (Machado et al., 2019), or for reward shaping (Wu et al., 2019). These
FB representations only depend on the dynamics and not on other signals (such as pixels),
which can be irrelevant for the task and biased representation learning toward ignoring the
most important information.

11.1 The Forward-Backward representation

In this section we study a specific parametric model for the successor state operator, which
has many advantages: a low-rank representation. We consider the model 𝑀𝜃(𝑠1,d𝑠2) =
𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2), with the particular choice

𝑚𝜃(𝑠1, 𝑠2) = ⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩ =
𝑟∑︁
𝑖=1

(𝐹𝜃𝐹 (𝑠1))𝑖 (𝐵𝜃𝐵 (𝑠2))𝑖 (11.1.1)

where 𝐹 : 𝑆 → R𝑟 and 𝐵 : 𝑆 → R𝑟 are two learnable functions from the state space to some
representation space R𝑟, parameterized by 𝜃 = (𝜃𝐹 , 𝜃𝐵). This provides an approximation of 𝑀
by a rank-𝑟 operator. Such a factorization is used for instance in (Schaul et al., 2015) for the
goal-dependent 𝑄-function (up to the factor 𝜌). We will also use the notation 𝐹𝜃𝐹 (𝑠1)⊤𝐵𝜃𝐵 (𝑠2) =
⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩.

Intuitively, 𝐹 is a “forward ” representation of states and 𝐵 a “backward ” representation: if
the future of 𝑠1 matches the past of 𝑠2, then 𝑀(𝑠1,d𝑠2) is large. The Forward and Backward TD
algorithms introduced in Chapters 7 and 8 can be applied directly to the FB parametrization, by
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considering 𝑚𝜃 as a standard parametric model, and without leveraging its bi-linear structure.
In Section 11.3, we study more specifically the Forward and Backward TD algorithms for the
FB parametrization and derive explicit updates, with lower variance.

11.2 A discussion of low rank approximations for the suc-
cessor states operators

In this section, before presenting algorithms to learn the FB parametrization in Section 11.3,
we discuss the advantages and limitations of using a low-rank representation for the successor
states operator.

Advantages of the low-rank parametrization Here are some of the main advantages of
using the FB parametrization for the successor states.

First, even in the tabular case, when the state space is discrete and unstructured, this
provides a form of prior or generalization between states (based on a low-rank prior for the
successor state operator). States that are linked by the MDP dynamics get representations 𝐹
and 𝐵 that are close. This prior might lead to generalization both in the tabular and continuous
case, if the low-rank hypothesis is reasonable. This is discussed in more details below.

Then, it provides a direct estimation of the value function at every state, without learning
an additional model of 𝑉 . Namely,

𝑉 (𝑠) ≈ 𝐹 (𝑠)⊤𝐵(𝑅), 𝐵(𝑅) := E𝑠∼𝜌[𝑟𝑠𝐵(𝑠)] (11.2.1)

where the “reward representation” 𝐵(𝑅) can be directly estimated by an online average of 𝐵(𝑠)
weighted by the reward 𝑟𝑠 at 𝑠. This is discussed in Section 12.1.2.

Furthermore, we will see in Section 11.3.2 that this parametrization simplifies the sampling
of a pair of states (𝑠, 𝑠2) needed for forward (or backward) TD, and allow variance reduction,
and even allows for purely “trajectory-wise” online estimates using only the current transition
𝑠→ 𝑠′, without sampling of another independent state 𝑠2. Moreover, we show in Section 11.5
that in expectation and in some settings, the FB parametrization is equivalent to second-order
methods of Chapter 9. Hence it could benefit of the efficiency obtained via the second-order
method without the huge variance.

Finally, it produces two (policy-dependent) representations of states, a forward and a
backward one, in a natural way from the dynamics of the MDP and the current policy. In
Section 11.4, we relate the fixed points of our algorithms for the low rank parametrization to
the singular value decomposition of the successor states operator, whose output are the optimal
low rank representation for the norm ‖.‖𝜌, and observe in practice in tabular environments that
the algorithm converges to the optimal low-rank representation. Hence, this algorithm can be a
way to learn the best representations containing information on the future of the trajectories,
in order to be used for other purposes such as exploration.

Limitation of the low-rank approximation The FB parametrization approximates the
successor state operator by an operator of rank at most 𝑟. This is never an exact representation
unless the representation dimension 𝑟 is at least the number of distinct states. The best rank-𝑟
approximation of (Id−𝛾𝑃 )−1 erases the small singular values of 𝑃 : thus this representation
will tend to erase “high frequencies” in the reward and value function, and provide a spatially
smoother approximation focusing on long-range behavior. This is fine as long as the reward is
not a “fast-changing” function made up of high frequencies (such as a “checkerboard” reward).
This can be expected: learning a reward-agnostic object such as 𝑀 cannot work equally well
for all rewards.

Is the low-rank hypothesis relevant for 𝑀? Small-rank approximations of a matrix are
relevant when the matrix has a few large eigenvalues and many small eigenvalues (or singular
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values, depending on the precise criterion). Since the successor state operator is the inverse of
Id−𝛾𝑃 , this means the approximation is reasonable if Id−𝛾𝑃 has few small eigenvalues and
many large eigenvalues.

The spectrum of Markov operators is a well-studied topic. For continuous-time operators
associated with random diffusions, possibly with added drift, the spectrum generally follows
Weyl’s law (Wikipedia, 2021): in dimension 𝑑, the continuous-time analogue of Id−𝑃 has
roughly 𝑘𝑑/2 eigenvalues of size ⩽ 𝑘, thus, few small and many large eigenvalues.

The simplest example is a random walk on a discrete torus [1;𝑛]. The operator 𝑃 is diagonal
in Fourier representation, with eigenvectors 𝑒2𝑖𝜋𝑘𝑥/𝑛 with 𝑘 an integer. The corresponding
eigenvalue of 𝑃 is cos(2𝜋𝑘/𝑛), yielding an eigenvalue (1− 𝛾) + 2𝛾 sin2(𝜋𝑘/𝑛) for Id−𝛾𝑃 . The
largest eigenvalue of 𝑃 is 1 (for 𝑘 = 0) corresponding to the smallest eigenvalue 1 − 𝛾 for
Id−𝛾𝑃 . For 𝛾 close to 1, (Id−𝛾𝑃 )−1 has a very large eigenvalue 1/(1− 𝛾), then an eigenvalue
of order 𝑛2/2𝜋2, and the next eigenvalues behave like 𝑛2/2𝑘2𝜋2, thus decreasing like 1/𝑘2. In
this case, a small-rank approximation is reasonable. A similar computation holds for periodic
grids [1;𝑛]𝑑 in higher dimension.

How general is this example? The best studied case is for continuous-time diffusions in
continuous spaces such as a subset in R𝑑. In continuous time, the analogue of the operator
Id−𝛾𝑃 is the infinitesimal generator operator of the continuous-time Markov process. For the
standard Brownian motion, this operator is the Laplacian ∆ =

∑︀𝑑
𝑖=1 𝜕

2/𝜕𝑥2𝑖 . Its inverse ∆−1

plays the role of the successor state operator and provides the value function in continuous time.
The spectrum of the Laplacian is well-known and follows Weyl’s law: there are about 𝑘𝑑/2
eigenvalues of size ⩽ 𝑘 (Wikipedia, 2021). In particular, ∆ has few small eigenvalues and many
large eigenvalues, so that the successor state operator (given by ∆−1, which provides the value
function in continuous time) has few large eigenvalues and many small eigenvalues as needed.

This applies not only to Brownian motion, but to basically any diffusion with drift and
variable coefficients on a subset of R𝑑: indeed, in this case the infinitesimal generator is an
elliptic operator and also follows Weyl’s law (Gårding, 1953). The same law also holds for
diffusions on Riemannian manifolds, as the Riemannian Laplace operator also follows Weyl’s
law (Berger, 2003, Chapter 9.7.2). These continuous estimates are still valid when discretizing
the state space (Xu et al., 2017a). So this situation is quite general.

11.3 The Forward-Backward algorithm

In this section, we study more specifically the temporal difference updates with the FB
parametrization. First, in Section 11.3.1, we show how tomix the Forward and Backward TD
updates, by using Forward or Backward TD on F, and independently Forward or Backward
TD (but not necessarily the same) on B. This lead to four potential algorithms. We then
study the Forward-Backward algorithm, using Forward TD on 𝐹 and Backward TD on 𝐵. In
Section 11.3.2 we show that there is a variance-reduced form for this method.

In the following sections we will study two theoretical properties of this approach. In
Section 11.4, we study the fixed point representations obtained with the Forward Backward
algorithm in the tabular case, and show it corresponds to truncated SVD for the ‖.‖𝜌 norm.
Finally in Section 11.5 we show that there is a relation between the FB updates and the second
order Bellman–Newton method, in a very simple case.

11.3.1 Mixing Forward-TD and Backward-TD updates with the FB
representation

The Forward-Backward representation introduced in Chapters 7 and 8 can be used directly for
Forward-TD and Backward-TD as discussed in Section 11.1, without changing anything for
this specific parametrization. It is also possible to mix the forward and backward updates. Let

𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) = ⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩𝜌(d𝑠2) (11.3.1)
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be our current model. The Forward-TD update of 𝜃 is ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2) defined in Theorem 7.5.

As, 𝜃 = (𝜃𝐹 , 𝜃𝐵), we can split

̂︀𝛿𝜃F-TD
(𝑠, 𝑠′, 𝑠2) = (̂︂𝛿𝜃𝐹 F-TD

(𝑠, 𝑠′, 𝑠2),̂︂𝛿𝜃𝐵F-TD
(𝑠, 𝑠′, 𝑠2)) (11.3.2)

Similarly, we can define the backward updates ̂︂𝛿𝜃𝐹B-TD
(𝑠, 𝑠′, 𝑠2) and ̂︂𝛿𝜃𝐵B-TD

(𝑠, 𝑠′, 𝑠2) via the
Backward-TD update on 𝑀𝜃 defined in Theorem 8.3.

An equivalent way of defining these updates is as follows: The forward update on F̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2) can be seen as the forward TD update ̂︀𝛿𝜃F-TD

(𝑠, 𝑠′, 𝑠2) for the model𝑚𝜃𝐹 (𝑠1, 𝑠2) =
⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩ in which 𝜃𝐵 is considered as a constant and we only learn 𝜃𝐹 .

Now, we mix the forward and backward updates together, and define the forward-forward
(ff), forward-backward (fb), backward-forward (bf) and backward-backward (bb) algorithms:

• Forward-Forward update (ff): Update 𝜃 = (𝜃𝐹 , 𝜃𝐵) with Forward TD both for F and B:

(̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2),̂︂𝛿𝜃𝐵F-TD

(𝑠, 𝑠′, 𝑠2)). This update is exactly equivalent to forward TD
on 𝑀𝜃 with the FB parametrization.

• Backward-Backward update (bb): Update 𝜃 = (𝜃𝐹 , 𝜃𝐵) with Backward TD both for F and

B: (̂︂𝛿𝜃𝐹B-TD
(𝑠, 𝑠′, 𝑠2),̂︂𝛿𝜃𝐵B-TD

(𝑠, 𝑠′, 𝑠2)). This update is exactly equivalent to backward
TD on 𝑀𝜃.

• Forward-Backward update (fb): Update 𝜃 with Forward TD for 𝐹 and Backward TD for

𝐵: (̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2),̂︂𝛿𝜃𝐵B-TD

(𝑠, 𝑠′, 𝑠2)).

• Backward-Forward update (bf): Update 𝜃 with Backward TD for 𝐹 and Forward TD:

(̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2),̂︂𝛿𝜃𝐵F-TD

(𝑠, 𝑠′, 𝑠2)).

We first show that mixing the forward and backward updates doesn’t change the fixed point
property of the algorithms:

Theorem 11.1. 𝑀 is a fixed point of the four algorithms (ff, fb, bf, bb)

Proof. We assume 𝑀 that there is 𝜃𝐹 and 𝜃𝐵 such that 𝑀(𝑠1, d𝑠2) = 𝐹𝜃𝐹 (𝑠1)⊤𝐵𝜃𝐵 (𝑠2)𝜌(d𝑠2). By definition,
we have to show that:

E
[︁̂︂𝛿𝜃𝐹 F-TD

(𝑠, 𝑠′, 𝑠2)
]︁
= E

[︁̂︂𝛿𝜃𝐵F-TD
(𝑠, 𝑠′, 𝑠2)

]︁
= E

[︁̂︂𝛿𝜃𝐵F-TD
(𝑠, 𝑠′, 𝑠2)

]︁
= E

[︁̂︂𝛿𝜃𝐵B-TD
(𝑠, 𝑠′, 𝑠2)

]︁
= 0

We know that ̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2) is the forward TD update ̂︂𝛿𝜃𝐹 F-TD

(𝑠, 𝑠′, 𝑠2) for the model 𝑚𝜃𝐹 (𝑠1, 𝑠2) =
⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵 (𝑠2)⟩ in which 𝜃𝐵 is considered as a constant and we only learn 𝜃𝐹 . If 𝑀(𝑠1,d𝑠2) =

𝐹𝜃𝐹 (𝑠1)⊤𝐵𝜃𝐵 (𝑠2)𝜌(d𝑠2), then by Theorem 7.5, we have E𝑠∼𝜌,𝑠′∼𝑃 (d𝑠′|𝑠),𝑠2∼𝜌

[︁̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2)

]︁
= 0. The

same argument can be applied to the three other terms (using equivalently Theorem 8.3 for the Backward
updates).

In the following, we will especially study the Forward-Backward (fb) algorithm. First, in
Section 11.3.2, we show that we can reduce the variance of the algorithm. Then, in Section 11.4,
we study the fixed point of the fb algorithm, and show in the tabular setting that these
coincides with the truncated SVD of the successor state operator. This is a strong argument
for this method, as the SVD is the optimal low-rank representation of a matrix. Finally in
Section 11.5, we show that in a simple setting the fb algorithm is equivalent in expectation to
the Bellman–Newton algorithm.

The other methods (bf, ff, bb) are more discussed in our preprint (Blier et al., 2021), but
this discussion was not included in this thesis for simplicity.

11.3.2 The variance reduced Forward-Backward algorithm
The following Theorem defines fb updates, equal in expectation to the updates defined in the
previous section, with a different structure. It uses the covariance matrices of the Forward and
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Algorithm 10 The Forward-Backward algorithm with function approximation, in a purely
online setting.

Input: Policy 𝜋(𝑎|𝑠), randomly initialized model 𝐹𝜃𝐹 (𝑠), 𝐵𝜃𝐵 (𝑠); TransitionMemory, co-
variance momentum 𝛼
Get an initial state 𝑠0 from the environment.
Define ̂︁Σ𝐹 ← 0𝑟×𝑟, ̂︁Σ𝐵 ← 0𝑟×𝑟
repeat

Sample 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), execute 𝑎𝑡 and observe 𝑠𝑡+1

Compute 𝑓𝜃𝐹 ← 𝐹𝜃𝐹 (𝑠𝑡), 𝑓 ′𝜃𝐹 ← 𝐹𝜃𝐹 (𝑠𝑡+1), 𝑏𝜃𝐵 ← 𝐵𝜃𝐵 (𝑠𝑡), 𝑏′𝜃𝐵 ← 𝐵𝜃𝐵 (𝑠𝑡+1)̂︂𝛿𝜃𝐹 fb-TD
← (𝜕𝜃𝐹 𝑓

⊤
𝜃𝐹
)𝑏𝜃𝐵 + (𝜕𝜃𝐹 𝑓

⊤
𝜃𝐹
) ̂︁Σ𝐵(𝛾𝑓 ′𝜃𝐹 − 𝑓𝜃𝐹 )̂︂𝛿𝜃𝐵 fb-TD

← (𝜕𝜃𝐵𝑏
⊤
𝜃𝐵
)𝑓𝜃𝐹 +

(︀
𝛾 𝜕𝜃𝐵𝑏

′
𝜃𝐵
− 𝜕𝜃𝐵𝑏𝜃𝐵

)︀⊤̂︁Σ𝐹 𝑏𝜃𝐵
Gradient steps: 𝜃𝐹 ← 𝜃𝐹 + 𝜂̂︂𝛿𝜃𝐹 fb-TD

and 𝜃𝐵 ← 𝜃𝐵 + 𝜂̂︂𝛿𝜃𝐵 fb-TD
.

Update covariance estimates: ̂︁Σ𝐹 ← (1− 𝛼)̂︁Σ𝐹 + 𝛼𝑓𝑓⊤ and ̂︁Σ𝐵 ← (1− 𝛼)̂︁Σ𝐵 + 𝛼𝑏𝑏⊤

𝑡← 𝑡+ 1
until end of learning

Backward representation:

Σ𝐹 := E𝑠1∼𝜌 𝐹 (𝑠1)𝐹 (𝑠1)⊤ (11.3.3)

Σ𝐵 := E𝑠2∼𝜌𝐵(𝑠2)𝐵(𝑠2)
⊤. (11.3.4)

The matrices Σ𝐹 and Σ𝐵 are 𝑟 × 𝑟 matrices. While we don’t directly have access to these
matrices, we can easily compute estimates ̂︁Σ𝐹 and ̂︁Σ𝐵 . Here are two possible ways to estimate
such estimates:

• If we are able to sample states 𝑠 ∼ 𝜌, (typically from a known distribution of states or
from a state buffer), we can sample a mini-batch (𝑠1, ..., 𝑠𝐵) of states each time we need
an estimate ̂︁Σ𝐵 or ̂︁Σ𝐹 , and define:

̂︁Σ𝐹 :=
1

𝐵

∑︁
1⩽𝑏⩽𝐵

𝐹 (𝑠𝑏)𝐹 (𝑠𝑏)
⊤ and ̂︁Σ𝐵 :=

1

𝐵

∑︁
1⩽𝑏⩽𝐵

𝐵(𝑠𝑏)𝐵(𝑠𝑏)
⊤ (11.3.5)

With this approach, we know that these estimates are unbiased: E(𝑠1,...,𝑠𝐵)

[︁̂︁Σ𝐹 ]︁ = Σ𝐹

and E(𝑠1,...,𝑠𝐵)

[︁̂︁Σ𝐵]︁ = Σ𝐵

• An other approach is to use a moving average with momentum, which is used in Algo-
rithm 10: when observing a state 𝑠 , we can update our estimates ̂︁Σ𝐹 and ̂︁Σ𝐵 as:

̂︁Σ𝐹 ← (1− 𝛼)̂︁Σ𝐹 + 𝛼𝐹 (𝑠)𝐹 (𝑠)⊤̂︁Σ𝐵 ← (1− 𝛼)̂︁Σ𝐵 + 𝛼𝐵(𝑠)𝐵(𝑠)⊤

These estimates are not unbiased but their variance might be lower. Moreover, it removes
the need for additional state sampling as in TD or Backward TD, and allow purely
trajectory-wise online estimation.

We now assume we have some estimates ̂︁Σ𝐹 and ̂︁Σ𝐵, regardless of the method used to
estimate it. We can now define the corresponding (fb) udpate:

Theorem 11.2. Consider the parametrization 𝑚𝜃(𝑠1, 𝑠2) = 𝐹𝜃𝐹 (𝑠1)
⊤𝐵𝜃𝐵 (𝑠2) of the successor

state operator 𝑀 where 𝐹 and 𝐵 are two functions from 𝒮 to R𝑟, parameterized by 𝜃 = (𝜃𝐹 , 𝜃𝐵).
We assume ̂︁Σ𝐹 and ̂︁Σ𝐵 are our current estimates of Σ𝐹 and Σ𝐵 defined in Equations (11.3.3)

and (11.3.4)
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When observing a transition (𝑠, 𝑠′) with 𝑠 ∼ 𝜌(d𝑠) and 𝑠′ ∼ 𝑃 (d𝑠′|𝑠), we define the fb updatê︀𝛿𝜃fb-TD
(𝑠, 𝑠′, ̂︁Σ𝐹 , ̂︁Σ𝐵) as

̂︀𝛿𝜃fb-TD
(𝑠, 𝑠′, ̂︁Σ𝐹 , ̂︁Σ𝐵) = (︁̂︂𝛿𝜃𝐹 fb-TD

(𝑠, 𝑠′, ̂︁Σ𝐵),̂︂𝛿𝜃𝐵 fb-TD
(𝑠, 𝑠′, ̂︁Σ𝐹 ))︁ (11.3.6)

with:

̂︂𝛿𝜃𝐹 fb-TD
(𝑠, 𝑠′, ̂︁Σ𝐵) = (𝜕𝜃𝐹𝐹𝜃𝐹 (𝑠))

⊤𝐵(𝑠) + (𝜕𝜃𝐹𝐹𝜃𝐹 (𝑠))
⊤̂︁Σ𝐵(𝛾𝐹 (𝑠′)− 𝐹 (𝑠)) (11.3.7)̂︂𝛿𝜃𝐵 fb-TD

(𝑠, 𝑠′, ̂︁Σ𝐹 ) = (𝜕𝜃𝐵𝐵𝜃𝐵 (𝑠))
⊤𝐹 (𝑠) + (𝛾 𝜕𝜃𝐵𝐵𝜃𝐵 (𝑠

′)− 𝜕𝜃𝐵𝐵𝜃𝐵 (𝑠))
⊤̂︁Σ𝐹𝐵(𝑠) (11.3.8)

If ̂︁Σ𝐹 = Σ𝐹 and ̂︁Σ𝐵 = Σ𝐵, the updates (11.3.7)-(11.3.8) are equal to the expectation with
respect to 𝑠2 of the (fb) update defined in Section 11.3.1: Formally, for every (𝑠, 𝑠′), we have

̂︂𝛿𝜃𝐹 fb-TD
(𝑠, 𝑠′,Σ𝐹 ) = E𝑠2∼𝜌

[︁̂︂𝛿𝜃𝐹F-TD
(𝑠, 𝑠′, 𝑠2)

]︁
(11.3.9)

̂︂𝛿𝜃𝐵 fb-TD
(𝑠, 𝑠′,Σ𝐵) = E𝑠2∼𝜌

[︁̂︂𝛿𝜃𝐵B-TD
(𝑠, 𝑠′, 𝑠2)

]︁
(11.3.10)

Hence, if ̂︁Σ𝐹 = Σ𝐹 and ̂︁Σ𝐵 = Σ𝐵, ̂︀𝛿𝜃fb-TD
(𝑠, 𝑠′, ̂︁Σ𝐹 , ̂︁Σ𝐵) is a variance-reduced forward-backward

TD update.

Proof. We consider the update ̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2). We have, from the definition of ̂︀𝛿𝜃F-TD(𝑠, 𝑠′, 𝑠2) in

Theorem 7.5 and the definition of ̂︂𝛿𝜃𝐹 F-TD
:

̂︂𝛿𝜃𝐹 F-TD
(𝑠, 𝑠′, 𝑠2) = 𝜕𝜃𝐹𝑚𝜃𝐹 (𝑠, 𝑠) + 𝜕𝜃𝐹𝑚𝜃𝐹 (𝑠, 𝑠2)

(︀
𝛾𝑚𝜃𝐹 (𝑠′, 𝑠2)−𝑚𝜃𝐹 (𝑠, 𝑠2)

)︀
= (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤𝐵𝜃𝐵 (𝑠) + (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤𝐵𝜃𝐵 (𝑠2)

(︀
𝛾𝐹𝜃𝐹 (𝑠′)− 𝐹𝜃𝐹 (𝑠)

)︀⊤
𝐵𝜃𝐵 (𝑠2)

We can rewrite the second term:

(𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤𝐵𝜃𝐵 (𝑠2)
(︀
𝛾𝐹𝜃𝐹 (𝑠′)− 𝐹𝜃𝐹 (𝑠)

)︀⊤
𝐵𝜃𝐵 (𝑠2) = (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤

(︁
𝐵𝜃𝐵 (𝑠2)𝐵𝜃𝐵 (𝑠2)

⊤
)︁ (︀
𝛾𝐹𝜃𝐹 (𝑠′)− 𝐹𝜃𝐹 (𝑠)

)︀
Hence:

E𝑠2∼𝜌
[︁̂︂𝛿𝜃𝐹 F-TD

(𝑠, 𝑠′, 𝑠2)
]︁
= (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤𝐵𝜃𝐵 (𝑠) + (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤E𝑠2∼𝜌

[︁
𝐵𝜃𝐵 (𝑠2)𝐵𝜃𝐵 (𝑠2)

⊤
]︁ (︀
𝛾𝐹𝜃𝐹 (𝑠′)− 𝐹𝜃𝐹 (𝑠)

)︀
= (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤𝐵𝜃𝐵 (𝑠) + (𝜕𝜃𝐹 𝐹𝜃𝐹 (𝑠))⊤Σ𝐵

(︀
𝛾𝐹𝜃𝐹 (𝑠′)− 𝐹𝜃𝐹 (𝑠)

)︀
= ̂︂𝛿𝜃𝐹 fb-TD

(𝑠, 𝑠′,Σ𝐹 )

The proof is similar for ̂︂𝛿𝜃𝐵 fb-TD
(𝑠, 𝑠′,Σ𝐵).

The algorithm corresponding to this update is defined in Algorithm 10. Is Sections 11.4
and 11.5 we will study theoretical properties of the forward-backward algorithm, first on its
fixed points and their relation to the SVD, then on its relation with the Bellman–Newton
method. In Section 11.4.2, we will show experimentally in tabular environments that the (fb)
algorithm converges in practice in practice to the optimal low rank approximation.

11.3.3 Relationship with successor representation learning and with
linear TD with learned features.

For fixed and orthonormal 𝐵, the forward update of 𝐹 corresponds to standard successor
representation learning with state representation (features) 𝐵.

To simplify things, in this paragraph we consider the “tabular-FB” setting, in which 𝐹 and
𝐵 are parameterized just by listing the value of 𝐹 (𝑠) and 𝐵(𝑠) on every state 𝑠, assuming a
finite state space. 1 For instance, the forward TD update (11.3.7) for 𝐹 , with learning rate
𝜂 > 0, becomes 𝐹 (𝑠)← 𝐹 (𝑠) + 𝜂 𝛿𝐹 (𝑠) where

𝛿𝐹 (𝑠) = 𝐵(𝑠) + Σ𝐵(𝛾𝐹 (𝑠
′)− 𝐹 (𝑠)) (11.3.11)

1This is different from a tabular setting for 𝑀 , which would parametrize 𝑀 by listing the values 𝑀(𝑠1, 𝑠2)
for every pair of states.
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upon sampling a transition 𝑠→ 𝑠′.
If 𝐵 is a fixed, 𝐿2(𝜌)-orthonormal collection of feature functions (namely, if Σ𝐵 = Id), then

this forward TD equation to learn 𝐹 is identical to standard deep successor representation
learning using 𝐵 as the representation. Indeed, standard deep successor representation learning
(Kulkarni et al., 2016) starts with given features 𝜙(𝑠) on the state space, and learns the
successor features 𝑚 as the expected discounted future value of 𝜙 along a trajectory (𝑠𝑡):
𝑚(𝑠) =

∑︀
𝑡⩾0 𝛾

𝑡E[𝜙(𝑠𝑡)|𝑠0 = 𝑠]. Such an 𝑚 is the fixed point of the Bellman equation
𝑚 = 𝜙 + 𝛾𝑃𝑚. Via identifying 𝑚 = 𝐹 and 𝜙 = 𝐵, ordinary TD for this Bellman equation
is equivalent to (11.3.11) when Σ𝐵 = Id. However, this is not the case if Σ𝐵 ≠ Id. This is
because scalings are different: With the successor state operator, if 𝐵 is doubled, then 𝐹 is
halved so that 𝑀 = 𝐹⊤𝐵 is fixed. With successor representations, if the state representation 𝜙
is doubled, then 𝑚 is doubled as well.

11.4 Fixed Points for the FB Representation of 𝑀

We now study the fixed points of the (fb) algorithm, which are the low-rank representations
possibly learned at convergence. We want to know if these final representations are well-
approximating the true successor states operator 𝑀𝜋. We will consider the finite state space
case, in which 𝑀𝜋 is a matrix. In that case, we can compare the low-rank representation
of 𝑀𝜋 learned via (fb) with the optimal low-rank representation for the 𝐿2(𝜌) norm. This
optimal low-rank representation is obtained by computing the SVD of 𝑀 for the 𝐿2(𝜌) norm::
find 𝑈,𝐷, 𝑉 three 𝑆 × 𝑆 matrices with 𝑀𝜋 = 𝑈𝐷𝑉⊤, 𝑈⊤Diag(𝜌)𝑈 = 𝑉⊤Diag(𝜌)𝑉 = Id𝒮 , and
𝐷 is a diagonal matrix with entries 𝑑1 ⩾ ... ⩾ 𝑑𝑆 ⩾ 0. Then, the optimal approximation of
𝑀𝜋 of rank 𝑟 for the 𝐿2(𝜌) norm is the matrix �̃� of rank at most 𝑟 which minimizes the
norm ‖�̃� −𝑀𝜋‖2𝜌. This optimum is achieved with the truncated SVD: �̃� = 𝑈�̃�𝑉⊤ with
�̃� = Diag(𝑑1, ..., 𝑑𝑟, 0, ..., 0). More details on the SVD and how it depends on 𝜌 is given in
Section 11.4.3.

In the following, we first prove that the fixed points of the (fb) algorithms are truncated
SVDs for the 𝐿2(𝜌) norm, which means the fixed points are matrices 𝑈�̃�𝑉⊤ where �̃� is
a diagonal matrix obtained by keeping only 𝑟 values of 𝐷 and setting other values to 0:
�̃� = Diag(𝜀1𝑑1, ..., 𝜀𝑆𝑑𝑆), with 𝜀𝑖 ∈ {0, 1} and

∑︀
𝑖 𝜀𝑖 = 𝑟. This is not sufficient condition for

convergence toward the global minima of ‖�̃� −𝑀𝜋‖2𝜌 for �̃� of rank at most 𝑟, but only for
convergence to local minima. Then, we show in some experiments that in practice, the (fb)
algorithm does converge to the optimal low-rank approximation.

11.4.1 Describing the fixed point of the (fb) algorithm

Here we state precisely, and prove, the fixed points properties for the fb-FB algorithm in the
tabular case. The “tabular” case for 𝐹 and 𝐵 means that the state space is finite and the values
of 𝐹 (𝑠) and 𝐵(𝑠) are stored explicitly for every state 𝑠.

In this section, we abuse notation by considering 𝐹 and 𝐵 both as functions from the state
space 𝒮 to R𝑟 and as 𝑟 × 𝑆-matrices. The model 𝑀(𝑠1,d𝑠2) = 𝐹 (𝑠1)

⊤𝐵(𝑠2)𝜌(d𝑠2) rewrites as
𝑀 = 𝐹⊤𝐵 diag(𝜌) or 𝑚 = 𝐹⊤𝐵, viewing everything as matrices with entries indexed by the
state space. We also assume that 𝜌𝑠 > 0 for every state 𝑠: every state is sampled with nonzero
probability.

Theorem 11.3. We assume the state space 𝒮 is finite, and 𝐹,𝐵 are 𝑟×𝑆 matrices. Let (𝐹,𝐵)
be a fixed point of the (fb) algorithm, 𝐹 and 𝐵 are local extrema of the error

ℓ(𝐹,𝐵) := ‖𝐹⊤(𝑠1)𝐵(𝑠2)𝜌(d𝑠2)−𝑀𝜋(𝑠1,d𝑠2)‖2𝜌 (11.4.1)

In that case, 𝐹⊤𝐵 diag(𝜌) is a truncated singular value decomposition of the operator 𝑀𝜋

acting on the space of functions over 𝒮 equipped with the 𝐿2(𝜌) norm.
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This theorem shows that the (fb) algorithm satisfies a necessary but not sufficient condition
in order to guarantee convergence to the optimal low rank representation for the 𝐿2(𝜌) norm.
The principle of looking for the optimal low-rank approximation via he SVD is similar to the
approach of Wu et al. (2019), which directly tries to approximate eigenvectors of the Laplacian.
In their approach, the main difficulty is to ensure the orthonormality of the learned vectors,
and they add a second objective, corresponding to a soft version of this constraint. On the
contrary, with the methods described above, no additional objective is needed.

We now provide experiments in tabular environments, showing that in practice, the (fb)
algorithm converges to the optimal low-rank approximation.

11.4.2 Experiments

(a) Random walk in a maze with 104 states (b) Random walk on a circle with 50 states.

Figure 11.1: Error of the low-rank approximations learned via the (fb) algorithm after conver-
gence (108 steps), as a function of the rank 𝑟, compared to the optimal low-rank approximation
of rank 𝑟 for the norm 𝐿2(𝜌), obtained with the SVD.

In this section, we study the low-rank approximation learned via the (fb) algorithm after
convergence, as a function of the rank 𝑟. We consider two environments: First, a small non-
reversible maze, already introduced in Chapter 9, in Figure 11.1a, with 104 states. The policy
is a uniform random walk.

Then, we consider a random walk on a circle, with 50 states (already introduced in Chapter 9).
At step 𝑡, the agent is in 𝑠𝑡 ∈ {0, ..., 49}, and 𝑠𝑡+1 = 𝑠𝑡 + 𝜀𝑡 mod 50, where 𝜀𝑡 is sampled
uniformly in {−1, 0, 1}.

We use Algorithm 10, in a purely online setting, with a single trajectory. We use a learning
rate schedule 𝜂𝑡 = 𝛽

𝑡+𝑡0
. For every environment, we selected 𝛽, 𝑡0 and 𝛼, from a grid (respectively

{10𝑘, 𝑘 ∈ [−4, 4]}, {10𝑘, 𝑘 ∈ [0, 9]}, and {10𝑘, 𝑘 ∈ [3, 5]}), for a single rank 𝑟 = 20 and
kept the same parameters for every other ranks. In practice, for both environment, we used
𝛽 = 100 and 𝑡0 = 105, and 𝛼 = 10−4. Every parameter of 𝐹 and 𝐵 are initialized independantly
as 𝒩 (0, 𝑆𝑟 ).

We measure for both environments the errors for the 𝐿2(𝜌) on the successor states estimate,
at the end of training (108 steps). We compare this value with the optimal representation for
the 𝐿2(𝜌) norm, obtained by computing the SVD of the operator, and truncate all singular
values except the 𝑟 largests.

In practice, we observe that when 𝑟 ≪ 𝑆, the error of the representation learned via the (fb)
algorithm corresponds to the optimal errorfor a representation of rank 𝑟. When 𝑟 is closer to 𝑆,
the difference between the error of the (fb) algorithm and the optimal error gets larger. This
can probably be explained by the expected asymptotic error of order 𝑂(1/

√
𝑡): even after 108

steps the method has not completely converged..
Theorem 11.3 proves that the fixed points of the method are truncated SVD for the 𝐿2(𝜌)

norm. The experiments, in these toy tabular environments, suggests that among all truncated
SVDs, the method converge to the one with the largest singular values.
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11.4.3 Proof of Theorem 11.3
Background on Singular Value Decompositions In the text, we often work with the
space of functions over 𝒮 equipped with the 𝐿2(𝜌) norm. Since 𝜌 ≠ Id, we include here a
reminder on how the usual notions of Euclidean vector spaces play out in non-orthonormal
bases. We also include details on what constitutes a “truncated singular value decomposition”.

A Euclidean vector space 𝐸 is a finite-dimensional vector space equipped with a dot product;
the dot product is given by some symmetric, positive definite matrix 𝑞 in some basis, namely,
⟨𝑥, 𝑦⟩𝐸 = 𝑥⊤𝑞𝑦 for any vectors 𝑥 and 𝑦.

If 𝐴 : 𝐸1 → 𝐸2 is a linear map between two Euclidean spaces, its adjoint 𝐴* is the map
from 𝐸2 to 𝐸1 such that ⟨𝑦,𝐴𝑥⟩𝐸2

= ⟨𝐴*𝑦, 𝑥⟩𝐸1
for any vectors 𝑥 ∈ 𝐸1 and 𝑦 ∈ 𝐸2. Expressed

in bases of 𝐸1 and 𝐸2, its matrix is 𝐴* = 𝑞−1
1 𝐴⊤𝑞2, or just 𝐴⊤ if the bases are orthonormal.

Such a map 𝐴 is orthogonal if 𝐴𝐴* = Id𝐸2 and 𝐴*𝐴 = Id𝐸1 .
The Hilbert–Schmidt norm for an operator 𝑀 on a Euclidean vector space is Tr(𝑀*𝑀)

where 𝑀* is the adjoint of 𝑀 . In an orthonormal basis this is Tr(𝑀⊤𝑀) viewing 𝑀 as a matrix,
but in a non-orthonormal basis this is Tr(𝑞−1𝑀⊤𝑞𝑀) where 𝑞 is the matrix defining the norm
in the basis.

A singular value decomposition of such a map 𝐴 is a triplet of linear maps 𝑈 : Rdim(𝐸2) → 𝐸2,
𝐷 : Rdim(𝐸1) → Rdim(𝐸2) and 𝑉 : Rdim(𝐸1) → 𝐸1 such that 𝐴 = 𝑈𝐷𝑉 *, 𝑈 and 𝑉 are orthogonal,
and 𝐷 is rectangular diagonal. Equivalently, a singular value decomposition can be written as
𝐴𝑥 =

∑︀
𝑖 𝑢𝑖𝑑𝑖⟨𝑣𝑖, 𝑥⟩𝐸1

where each 𝑑𝑖 > 0, the 𝑢𝑖’s make an orthonormal family in 𝐸2, and the
𝑣𝑖’s make an orthonormal family in 𝐸1 (or equivalently, an orthonormal family of linear forms
on 𝐸1 by identifying 𝑣𝑖 with the map 𝑥 ↦→ ⟨𝑣𝑖, 𝑥⟩𝐸1

).

Definition 11.4 (Truncated SVD). A linear map 𝐵 is a truncated singular value decomposition
of a linear map 𝐴 : 𝐸1 → 𝐸2 if there is a singular value decomposition 𝐴 = 𝑈𝐷𝑉 * of 𝐴 and a
rectangular diagonal matrix 𝐷′ such that 𝐷′ is obtained from 𝐷 by replacing some elements
with 0, and 𝐵 = 𝑈𝐷′𝑉 *.

Lemma 11.5. A linear map 𝐵 : 𝐸1 → 𝐸2 is a truncated singular value decomposition of
𝐴 : 𝐸1 → 𝐸2 if and only if 𝐴 and 𝐵 are equal on (Ker𝐵)⊥ and the image of Ker𝐵 by 𝐴 is
orthogonal to the image of 𝐵.

Proof. (⇐) Define 𝐸′
1 = Ker𝐵 and 𝐸′′

1 = (Ker𝐵)⊥ so that 𝐸1 = 𝐸′
1⊕𝐸′′

1 . Let 𝐴′ and 𝐴′′ be the restrictions
of 𝐴 to 𝐸′

1 and 𝐸′′
1 respectively, so that 𝐴 = 𝐴′ +𝐴′′. Define 𝐵′ and 𝐵′′ likewise.

Since 𝐸′
1 is Ker𝐵, we have 𝐵′ = 0 so 𝐵 = 𝐵′′.

By assumption, 𝐴 and 𝐵 are equal on 𝐸′′
1 . Therefore, 𝐴′′ = 𝐵′′, so 𝐵 = 𝐴′′.

By assumption, the image of 𝐸′
1 by 𝐴 is orthogonal to the image of 𝐵. The former is Im𝐴′ while the

latter is Im𝐴′′. Therefore, Im𝐴′⊥ Im𝐴′′.
Consider singular value decompositions of 𝐴′ and 𝐴′′ as 𝐴′ =

∑︀
𝑖 𝑢

′
𝑖𝑑

′
𝑖𝑣

′
𝑖 and 𝐴′′ =

∑︀
𝑗 𝑢

′′
𝑗 𝑑

′′
𝑗 𝑣

′′
𝑗 , where

the 𝑑′𝑖 are positive real numbers, the 𝑢′𝑖 are an orthonormal basis of Im𝐴′, the 𝑣′𝑖 are an orthonormal set of
linear forms on 𝐸′

1, and likewise for 𝐴′′. (Any zero singular values have been dropped in this decomposition.)
Since Im𝐴′⊥ Im𝐴′′, the 𝑢′𝑖 ’s are orthogonal to the 𝑢′′𝑗 ’s. Likewise, since the decomposition 𝐸1 = 𝐸′

1⊕𝐸′′
1

is orthogonal, the 𝑣′𝑖 ’s are orthogonal to the 𝑣′′𝑗 ’s as linear forms on 𝐸1.
It follows that

∑︀
𝑖 𝑢

′
𝑖𝑑

′
𝑖𝑣

′
𝑖 +

∑︀
𝑗 𝑢

′′
𝑗 𝑑

′′
𝑗 𝑣

′′
𝑗 is a singular value decomposition of 𝐴 (with the zero singular

values omitted). Since 𝐵 = 𝐴′′,
∑︀
𝑗 𝑢

′′
𝑗 𝑑

′′
𝑗 𝑣

′′
𝑗 is a singular value decomposition of 𝐵, so that 𝐵 is a truncated

SVD of 𝐴.
(⇒) Let 𝐴 = 𝑈𝐷𝑉 * and 𝐵 = 𝑈𝐷′𝑉 * as in Definition 11.4. Up to swapping rows and columns, we can

assume that the nonzero entries of 𝐷 and 𝐷′ are located in the first rows. Let 𝑘 be the number of nonzero
entries in 𝐷′. Then Ker𝐷′ is spanned by the last dim(𝐸1)− 𝑘 basis vectors in Rdim(𝐸1), and (Ker𝐷′)⊥ is
spanned by the first 𝑘 basis vectors. Thus, by construction, 𝐷 and 𝐷′ coincide on (Ker𝐷′)⊥. Moreover,
Im𝐷′ is spanned by the first 𝑘 basis vectors, and 𝐷(Ker𝐷′) is spanned by the last dim(𝐸1)− 𝑘 basis vectors,
so Im𝐷′ and 𝐷(Ker𝐷′) are orthogonal.

Since 𝐴 = 𝑈𝐷𝑉 * and 𝐵 = 𝑈𝐷′𝑉 *, and since 𝑈 is invertible, 𝐴 and 𝐵 are equal on (Ker𝐵)⊥ if and only
if 𝐷𝑉 * and 𝐷′𝑉 * are equal on (Ker𝐵)⊥. Since 𝑉 * is invertible, this happens if and only if 𝐷 and 𝐷′ are
equal on 𝑉 *((Ker𝐵)⊥). Since 𝑉 * is orthogonal, the latter is (𝑉 *(Ker𝐵))⊥.

Since 𝑈 and 𝑉 are orthogonal, hence invertible, one has Ker𝐵 = Ker(𝑈𝐷′𝑉 *) = Ker(𝐷′𝑉 *) = 𝑉 (Ker𝐷′).
Hence 𝑉 *(Ker𝐵) = Ker𝐷′. Thus, we need 𝐷 and 𝐷′ to be orthogonal on Ker𝐷′, which we have established
above.

Next, let us prove that 𝐴(Ker𝐵)⊥ Im𝐵, namely, that 𝑈𝐷𝑉 *(Ker𝐵)⊥ Im(𝑈𝐷′𝑉 *). Since 𝑈 is orthogonal,
this is equivalent to 𝐷𝑉 *(Ker𝐵)⊥ Im(𝐷′𝑉 *). We have seen that 𝑉 *(Ker𝐵) = Ker𝐷′; moreover Im(𝐷′𝑉 *) ⊂
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Im(𝐷′), so it is enough to prove that 𝐷(Ker𝐷′)⊥ Im𝐷′, which we have established above. This proves the
first part of the equivalence.

Proof of Theorem 11.3
Proof. First, we derive the tabular updates of 𝐹 and 𝐵 for fb-FB. By direct identification in Proposition 11.2,
in the tabular case we find the following expressions for the updates of 𝐹 and 𝐵. Abbreviate diag(𝜌) for the
diagonal matrix with entries 𝜌𝑠 for each state 𝑠, then the updates 𝛿𝜃𝐹 and 𝛿𝜃𝐵 of Proposition 11.2 for the
fb-FB algorithm are equal to

𝛿𝐹 = 𝐵 diag(𝜌)− Σ𝐵𝐹Δ⊤diag(𝜌) (11.4.2)
𝛿𝐵 = 𝐹 diag(𝜌)− Σ𝐹𝐵 diag(𝜌)Δ (11.4.3)

for backward TD on 𝐹 and 𝐵 respectively. Here Δ is the matrix Id−𝛾𝑃 , Σ𝐵 = 𝐵 diag(𝜌)𝐵⊤, and Σ𝐹 =
𝐹 diag(𝜌)𝐹⊤.

Viewing �̃�, 𝐹 and 𝐵 as matrices, the loss is

ℓ(𝐹,𝐵) =
∑︁
𝑖𝑗

𝜌(𝑖)𝜌(𝑗)

(︃∑︁
𝑘

𝐹𝑘𝑖𝐵𝑘𝑗 − �̃�𝑖𝑗

)︃2

(11.4.4)

so that
𝜕ℓ(𝐹,𝐵)

𝜕𝐹𝑘𝑖
= 2

∑︁
𝑗

𝜌(𝑖)𝜌(𝑗)𝐵𝑘𝑗

(︃∑︁
𝑘′
𝐹𝑘′𝑖𝐵𝑘′𝑗 − �̃�𝑖𝑗

)︃
(11.4.5)

which is the 𝑘𝑖 entry of the matrix 2𝐵 diag(𝜌)(𝐵⊤𝐹 − �̃�⊤) diag(𝜌).
Now, 𝐹 is a local extremum of this loss if and only if this derivative is 0 for every 𝑘𝑖, namely, if and

only if the matrix 𝐵 diag(𝜌)(𝐵⊤𝐹 − �̃�⊤) diag(𝜌) is 0. Now, by definition of �̃� we have 𝑀 = �̃� diag(𝜌),
namely, �̃� = Δ−1 diag(𝜌)−1. So 𝐵 diag(𝜌)(𝐵⊤𝐹 − �̃�⊤) diag(𝜌) = 0 is equivalent to 𝐵 diag(𝜌)𝐵⊤𝐹 diag(𝜌)−
𝐵(Δ−1)⊤diag(𝜌) = 0. Since diag(𝜌) and Δ are invertible, by multiplying by diag(𝜌)−1Δ⊤diag(𝜌) on the
right, this is equivalent to 𝐵 diag(𝜌)𝐵⊤𝐹Δ⊤diag(𝜌)−𝐵 diag(𝜌) = 0. This is equivalent to 𝛿𝐹 = 0 in (11.4.2),
namely, to 𝐹 being a fixed point of forward TD.

A similar computation with 𝐵 proves that 𝜕ℓ(𝐹,𝐵)/𝜕𝐵 = 0 if and only if 𝛿𝐵 = 0 in (11.4.3), namely, if
and only if 𝐵 is a fixed point of backward TD. Therefore, 𝐹 and 𝐵 are a local optimum of ℓ if and only if
they are a fixed point of the fb-FB algorithm.

Let us turn to the statement about singular value decompositions. Generally speaking, we know that the
matrices of a given rank which are local extrema of the matrix norm of the difference with �̃� are truncated
singular value decompositions of �̃�; however, here these matrices are parameterized as 𝐹⊤𝐵, and a priori this
parametrization might change the local extrema, so we give a full proof.

By Lemma 11.5, the matrix 𝐹⊤𝐵 diag(𝜌) is a truncated SVD of 𝑀 if and only if 𝐹⊤𝐵 diag(𝜌) and 𝑀
coincide on (Ker𝐹⊤𝐵 diag(𝜌))⊥ and 𝑀(Ker𝐹⊤𝐵 diag(𝜌))⊥ Im𝐹⊤𝐵 diag(𝜌). Here all orthogonality relations
are defined with respect to the 𝐿2(𝜌) inner product, namely, ⟨𝑥, 𝑦⟩ = 𝑥⊤diag(𝜌)𝑦.

If 𝐹 is a fixed point of (11.4.2), then 0 = 𝐵 diag(𝜌) − Σ𝐵𝐹Δ⊤diag(𝜌). Since diag(𝜌) is invertible
and since Σ𝐵 = 𝐵 diag(𝜌)𝐵⊤, this rewrites as 𝐵(Id− diag(𝜌)𝐵⊤𝐹Δ⊤) = 0. Taking transposes, this is
(Id−Δ𝐹⊤𝐵 diag(𝜌))𝐵⊤ = 0. By definition, 𝑀 is the inverse of Δ; multiplying by 𝑀 , we find (𝑀 −
𝐹⊤𝐵 diag(𝜌))𝐵⊤ = 0. This implies that 𝑀 and 𝐹⊤𝐵 diag(𝜌) coincide on the image of 𝐵⊤. A fortiori,
they coincide on the image of 𝐵⊤𝐹 diag(𝜌), which is included in the image of 𝐵⊤.

In general, for an operator 𝐴 on a Euclidean space, Im𝐴 = (Ker𝐴*)⊥ with 𝐴* the adjoint of 𝐴. Here,
with the inner product from 𝐿2(𝜌), the adjoint of 𝐴 is diag(𝜌)−1𝐴⊤diag(𝜌) (Appendix 11.4.3). So the adjoint
of 𝐵⊤𝐹 diag(𝜌) is 𝐹⊤𝐵 diag(𝜌). Therefore, Im𝐵⊤𝐹 diag(𝜌) is (Ker𝐹⊤𝐵 diag(𝜌))⊥. So 𝑀 and 𝐹⊤𝐵 diag(𝜌)
coincide on (Ker𝐹⊤𝐵 diag(𝜌))⊥. This was the first point to be proved.

Next, if 𝐵 is a fixed point of (11.4.3), then 0 = 𝐹 diag(𝜌) − 𝐹 diag(𝜌)𝐹⊤𝐵 diag(𝜌)Δ. Multiplying on
the right by 𝑀 = Δ−1 this is equivalent to 𝐹 diag(𝜌)(𝑀 − 𝐹⊤𝐵 diag(𝜌)) = 0. This states that the image
of 𝑀 − 𝐹⊤𝐵 diag(𝜌) is 𝜌-orthogonal to the image of 𝐹⊤. So for any 𝑥, (𝑀 − 𝐹⊤𝐵 diag(𝜌))𝑥⊥ Im𝐹⊤. Take
𝑥 ∈ Ker𝐹⊤𝐵 diag(𝜌). Then 𝑀𝑥⊥ Im𝐹⊤. Since Im𝐹⊤𝐵 diag(𝜌) ⊂ Im𝐹⊤, we have 𝑀𝑥⊥ Im𝐹⊤𝐵 diag(𝜌) as
well. Therefore, the image of Ker𝐹⊤𝐵 diag(𝜌) by 𝑀 is orthogonal to the image of 𝐹⊤𝐵 diag(𝜌). This was the
second point to be proved.

11.5 The FB Representation and Bellman–Newton

In this section, we show that there is a relation between the FB updates and the second order
Bellman–Newton method. We prove this relation in a simple case: we assume 𝜌 is the invariant
measure of the process, and is the uniform measure. Moreover, we assume 𝑃 is symmetric:
𝑃𝑠1𝑠2 = 𝑃 (𝑠2𝑠1). In that case, we prove that the tabular FB updates (all four versions) coincide
with the Bellman–Newton update in the small-learning-rate (continuous-time) limit, on-policy,
with suitable initializations.
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While this theorem only holds in a specific case, it suggests that FB updates might enjoy
Bellman–Newton increased asymptotic convergence, while having a smaller variance.

Theorem 11.6 (The FB update is Bellman–Newton for symmetric 𝑃 ). Assume that the state
space 𝒮 is finite with 𝑆 := |𝒮|, and that the transition matrix 𝑃 is symmetric. Let 𝜌 be the
uniform distribution on 𝒮, which is invariant under the Markov process. Let diag(𝜌) = 1

𝑆 Id be
the diagonal matrix with entries 𝜌.

We assume 𝑟 = 𝑆 and initialize 𝐹0 and 𝐵0 as 𝐹0 = 𝐵0 = Id. Consider the continuous-time
equation

d𝐹𝑡
d𝑡

= 𝛿𝐹,
d𝐵𝑡
d𝑡

= 𝛿𝐵 (11.5.1)

where 𝛿𝐹 and 𝛿𝐵 are the tabular FB updates in equations (11.4.2) and (11.4.3), corresponding
to the Tabular case in Proposition 11.2, computed at 𝐹𝑡 and 𝐵𝑡. Any of the four variants ff-FB,
fb-FB, bf-FB, bb-FB may be used.

Let 𝑀𝑡 := 𝐹⊤
𝑡𝐵𝑡 diag(𝜌) be the resulting estimate of the successor state matrix. Then 𝑀𝑡

evolves according to the Bellman–Newton update

d𝑀𝑡

d𝑡
= 𝜂𝑀𝑡 − 𝜂𝑀𝑡(Id−𝛾𝑃 )𝑀𝑡 (11.5.2)

with learning rate 𝜂 = 2/𝑆.

Proof. We abbreviate 𝐹 ′
𝑡 for d𝐹𝑡/ d𝑡 and likewise for all other quantities.

According to equations (11.4.2) and (11.4.3), the forward-TD equations for 𝐹 and 𝐵 are

𝐹 ′
𝑡 = 𝐵𝑡 diag(𝜌)−𝐵𝑡 diag(𝜌)𝐵⊤

𝑡𝐹𝑡Δ
⊤diag(𝜌), 𝐵′

𝑡 = 𝐹𝑡 diag(𝜌)− 𝐹𝑡 diag(𝜌)Δ𝐹⊤
𝑡𝐵𝑡 diag(𝜌) (11.5.3)

and the backward-TD equations are

𝐹 ′
𝑡 = 𝐵𝑡 diag(𝜌)−𝐵𝑡(diag(𝜌)Δ)⊤𝐵⊤

𝑡𝐹𝑡 diag(𝜌), 𝐵′
𝑡 = 𝐹𝑡 diag(𝜌)− 𝐹𝑡 diag(𝜌)𝐹⊤

𝑡𝐵𝑡 diag(𝜌)Δ (11.5.4)

Here we have diag(𝜌) = 1
#𝑆

Id. Moreover, since 𝑃 is symmetric, we have Δ = Δ⊤.
Let us start with the bf-FB variant (backward-TD on 𝐹 and forward-TD on 𝐵). In that case, the evolution

equations are symmetric between 𝐹 and 𝐵, because Δ = Δ⊤. Therefore, if 𝐹 = 𝐵 at startup then 𝐹 = 𝐵 at
all times. Thus, we have 𝑀𝑡 = 𝐹⊤

𝑡 𝐹𝑡 diag(𝜌). Since diag(𝜌) is proportional to Id, it commutes with all other
terms. Thus, using 𝐹𝑡 = 𝐵𝑡 and Δ = Δ⊤, we find

𝑀 ′
𝑡 = (𝐹 ′

𝑡 )
⊤𝐹𝑡 diag(𝜌) + 𝐹⊤

𝑡 𝐹
′
𝑡 diag(𝜌) (11.5.5)

= 2𝐹⊤
𝑡 𝐹𝑡 diag(𝜌)

2 − 2𝐹⊤
𝑡 𝐹𝑡Δ𝐹

⊤
𝑡 𝐹𝑡 diag(𝜌)

3 (11.5.6)
= 2𝑀𝑡 diag(𝜌)− 2𝑀𝑡Δ𝑀𝑡 diag(𝜌) (11.5.7)

=
2

𝑆
(𝑀𝑡 −𝑀𝑡Δ𝑀𝑡) (11.5.8)

as diag(𝜌) = 1
𝑆
Id. This is the Bellman–Newton update.

In the other cases there is one more argument, after which the computation is similar. At startup, by
assumption we have 𝐹 = 𝐵 and Δ commutes with 𝐹⊤𝐵. Assume that, at some particular time 𝑡, we have
𝐹𝑡 = 𝐵𝑡 and Δ commutes with 𝐹⊤

𝑡𝐵𝑡. Then, since Δ = Δ⊤ and diag(𝜌) commutes with everything, all the
updates of 𝐹 and 𝐵 at that time 𝑡 amount to just

𝐹 ′
𝑡 = 𝐹𝑡 diag(𝜌)− 𝐹𝑡𝐹⊤

𝑡 𝐹𝑡Δdiag(𝜌)2. (11.5.9)

Therefore, at that time 𝑡, the derivative of the commutator between Δ and 𝐹⊤
𝑡𝐵𝑡 is

[Δ, 𝐹⊤
𝑡𝐵𝑡]

′ = [Δ, (𝐹⊤
𝑡 𝐹𝑡)

′] (11.5.10)

= [Δ, 2𝐹⊤
𝑡 𝐹𝑡 diag(𝜌)− 𝐹⊤

𝑡 𝐹𝑡𝐹
⊤
𝑡 𝐹𝑡Δdiag(𝜌)2 −Δ𝐹⊤

𝑡 𝐹𝑡𝐹
⊤
𝑡 𝐹𝑡 diag(𝜌)

2] (11.5.11)
= 0 (11.5.12)

since Δ commutes with 𝐹⊤
𝑡 𝐹𝑡 and diag(𝜌) commutes with everything.

Thus, if at some time 𝑡 one has 𝐹𝑡 = 𝐵𝑡 and Δ commutes with 𝐹⊤
𝑡𝐵𝑡, then 𝐹𝑡 and 𝐵𝑡 have the same

derivative at time 𝑡, and the derivative of the commutator of Δ and 𝐹⊤
𝑡𝐵𝑡 is 0. Therefore, if these conditions

hold at startup, they hold at all times 𝑡. In that case, the evolution equations become identical to the bf-FB
case, and the conclusion holds as above.





Chapter 12

Learning Value Functions via
Successor States

There are a few possible ways to learn the value function 𝑉 using use a model 𝑀𝜃 of the
successor state operator. We mainly define two approaches: first, in Section 12.1 by using the
equation 𝑉 𝜋(𝑠) = (𝑀𝜋 ·𝑅)(𝑠) and estimating the integral

∫︀
𝑠2
𝜌(d𝑠2)𝑚𝜃(𝑠, 𝑠2)𝑅(𝑠2). Then, in

Section 12.2, by using 𝑚𝜃 as a way to propagate the Bellman error of Temporal Difference in
the environment, similarly to TD(𝜆) with eligibility traces.

12.1 Learn 𝑉 using directly 𝑉 = 𝑀𝑅

The simplest way to compute the value function 𝑉 via a model 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2)
of the successor state operator is to estimate the matrix vector product 𝑉 =𝑀𝑅. We consider
three specific cases: first is the reward is located in a single goal state 𝑅(𝑠) = 1𝑠=𝑠tar , then if
we use the FB parametrization defined in chapter 11, finally for a more general dense reward
setting.

12.1.1 The sparse Dirac reward case

If the reward is located in a single state 𝑠tar, we can directly estimate 𝑉 as:

𝑉𝜃(𝑠) = 𝑚𝜃(𝑠, 𝑠tar) (12.1.1)

Indeed, in that case the reward in a continuous state space is usually defined up to a precision 𝜀:
𝑅𝜀(𝑠) = 1‖𝑠−𝑠tar‖⩽𝜀. In that case, in the limit 𝜀→ 0, then the value function goes to 𝑚(𝑠, 𝑠tar),
up to a multiplicative constant. This case is very related to the goal-oriented setting developed
in Part V, hence will not be described with more details here. The main difference is that here
we learn a single policy 𝜋(𝑎|𝑠) which does not depend on the target state, whereas in Part V
we learn a goal dependent policy 𝜋(𝑎|𝑠, 𝑔). In particular, the statement on the limit 𝜀 → 0
informally stated above corresponds to Theorem 13.5 in the goal-oriented setting.

The sparse Dirac reward case can be extended to sparse rewards in a feature space of the
state: if 𝜙 : 𝒮 → R𝑘 is a feature function of the states and the reward is 𝑅𝜀(𝑠) = 1‖𝜙(𝑠)−𝑔‖⩽𝜀.
This can be useful for instance in an environment in which the agent gets a reward if it brings
an object to a goal: the state contains information on the position of both the agent and
the object, but the reward only depend of the position of the object. In that case, we can
learn the successor feature operator 𝑀𝜙

𝜃 (𝑠1,d𝑔) = 𝑚𝜙
𝜃 (𝑠1, 𝑔) defined in Section 7.8. (In the

example, 𝜙(agent position, object position) = object position.) Then the value function can be
estimated through:

𝑉𝜃(𝑠) = 𝑚𝜙
𝜃 (𝑠, 𝑔) (12.1.2)
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Algorithm 11 Policy evaluation via successor states with the FB parametrization.

Input: Policy 𝜋(𝑎|𝑠), randomly initialized model 𝐹𝜃𝐹 (𝑠), 𝐵𝜃𝐵 (𝑠); an algorithm for learning
(𝐹𝜃𝐹 , 𝐵𝜃𝐵 ) FBAlgorithm (such as Algorithm 10), momentum parameter 𝛼
Get an initial state 𝑠0 from the environment.
repeat

Sample 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), execute 𝑎𝑡 and observe 𝑠𝑡+1, 𝑟𝑡+1

Update 𝜃𝐹 , 𝜃𝐵 ← FBAlgorithm(st, st+1)
Update 𝑏𝑟: 𝑏𝑟 ← (1− 𝛼)𝑏𝑟 + 𝛼.𝑟𝑡𝐵𝜃𝐵 (𝑠𝑡)
\\ Then, the value model is 𝑉 (𝑠) = ⟨𝐹𝜃𝐹 (𝑠), 𝑏𝑟⟩
𝑡← 𝑡+ 1

until end of learning

12.1.2 Learn 𝑉 with the FB parametrization
The FB representation of Chapter 11 directly provides a representation of the value function as

𝑉 (𝑠) ≈ 𝐹 (𝑠)⊤𝐵(𝑅), 𝐵(𝑅) := E𝑠∼𝜌[𝑟𝑠𝐵(𝑠)] (12.1.3)

where 𝐵(𝑅) is a “representation of the reward”, which can be sampled by weighting the repre-
sentation 𝐵(𝑠) of states by their reward. Thus 𝐵(𝑅) can be estimated online (Algorithm 11).

Since the FB representation will focus on low frequencies (long-range) features, it might
be useful to used a “mixed” model for 𝑉 , with 𝐹 (𝑠)⊤𝐵(𝑅) as one component, and another
component learned via ordinary TD; see (12.1.6) below.

12.1.3 General case, with a dense reward
We consider a general dense reward. We say that a reward is dense if, with an initial random
policy, the probability of observing a reward is not 0. This covers all standard environments.
Still, using a sparse reward which is non zero only on a specific target state 𝑠tar can be a very
important use case. In that case, in a continuous stochastic environment, the probability of
reaching exactly the state 𝑠tar hence observing a reward is 0. This is very related to multi-goal
RL, discussed in Part V). In that case, a simple option is to learn a model of 𝑉 based on
𝑉 =𝑀𝑅. This becomes a supervised learning problem. No matrix product is necessary: we
can perform a stochastic gradient descent of ‖𝑉 −𝑀𝑅‖2𝐿2(𝜌) with respect to the parameters of
𝑉 , just by sampling states, either with discrete or continuous states.

With 𝑉 parameterized as 𝑉𝜙, and with 𝑀 parameterized by the model 𝑚𝜃, we have

−𝜕𝜙 ‖𝑉𝜙 −𝑀𝑅‖2𝐿2(𝜌) = 2E𝑠∼𝜌, 𝑠1∼𝜌 [𝜕𝜙𝑉𝜙(𝑠1)(𝑟𝑠𝑚(𝑠1, 𝑠)− 𝑉𝜙(𝑠1))] (12.1.4)

where 𝑟𝑠 is the reward obtained when visiting state 𝑠. As for other algorithms presented here,
this requires sampling one or several additional states 𝑠1 in addition to the state 𝑠 currently
visited. This is formalized in Algorithm 12.

12.1.4 Mixed approach: mitigate the approximation errors of 𝑀 with
an additional component

Learning 𝑉 via 𝑉 =𝑀𝑅 assumes that the model of 𝑀 is reasonably accurate: any error on 𝑀
shows up on 𝑉 . Another option is to just use 𝑀𝑅 as a component in the model of 𝑉 , or as an
initialization to 𝑉 . For instance, 𝑉 may be parameterized as

𝑉 := 𝑉𝜙1
+ 𝑉𝜙2

(12.1.5)

where 𝑉𝜙1
is trained to match 𝑀𝑅 using (12.1.4), and 𝑉𝜙2

is learned via ordinary TD.
In the FB representation this would yield

𝑉 (𝑠) = 𝐹 (𝑠)⊤𝐵(𝑅) + 𝑉𝜙2(𝑠) (12.1.6)
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Algorithm 12 Policy evaluation via M with a dense reward.

Input: Policy 𝜋(𝑎|𝑠), randomly initialized 𝑀𝜃𝑀 , 𝑉𝜙 models, any algorithm for updating 𝑀𝜃

SSLAlgorithm; TransitionMemory, maximum number of time steps 𝑇 , parameters 𝐾,𝐿 ⩾ 0
repeat

for 𝐾 trajectories do
Get an initial state 𝑠0, 𝑟0 from the environment.
for 0 ⩽ 𝑡 ⩽ 𝑇 steps do do

Sample 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), execute 𝑎𝑡 and observe 𝑠𝑡+1, 𝑟𝑡+1

Store in the transition memory the transition TransitionMemory← (𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1)
end for

end for
for 𝐿 gradient steps do

Sample a transition (𝑠, 𝑟, 𝑠′) ∼ TransitionMemory.
Sample a state (𝑠1,_,_) ∼ TransitionMemory.
Compute ̂︁𝛿𝜙 = 1

2𝜕𝜙 (𝑟.𝑚𝜃(𝑠1, 𝑠)− 𝑉𝜙(𝑠1))2
Update 𝑀𝜃 with SSLAlgorithm

Gradient steps: 𝜙← 𝛿 + 𝜂̂︂𝛿𝜃𝐹 fb-TD

end for
until end of learning

where 𝐵(𝑅) is estimated online as above, and 𝜙2 is estimated by ordinary TD.
This makes particular sense for the FB representation: in Section 11.4 we prove that the

fb-FB algorithm minimizes a loss producing a truncated SVD of 𝑀 , thus focusing on large
eigenvalues of 𝑀 (large eigenvalues of 𝑃 , long-range dependencies in the environment). Thus
𝐹 (𝑠)⊤𝐵(𝑅) will focus on large eigenvalues of 𝑃 . The training of 𝐹 and 𝐵 is reward-independent
(“unsupervised” reinforcement learning). Thus, ordinary TD on 𝑉𝜙2 may be useful to catch
short-range (high-frequency) behavior in the reward.

12.2 Using 𝑀 for credit assignment: estimate the expected
SSIPE and expected 𝑇𝐷(𝜆) updates

We now consider an other approach for policy evaluation via the successor states operator, in
which the successor state model 𝑚𝜃 is used to propagate the Bellman error in the environment,
or in other words to improve the credit assignment when observing a transition (𝑠, 𝑟, 𝑠′). The
algorithm is formalized in Algorithm 13. This method has two interesting interpretations:

First, we derive this method from the expected value update via SSIPE in the tabular
case, presented in section 12.2.1. In Section 12.2.2, we define the corresponding algorithm with
function approximations. Hence, this method can be seen as an approximation of the online
update of the value function for the process estimation method described in Section 9.2.

We then show in Section 12.2.3 that this update corresponds to an estimate of the expected
eligibility traces update in TD(𝜆). Eligibility traces, introduced in Section 1.4.2 are a way to
improve credit assignment by propagating the Bellman error to the states recently visited in the
current trajectory. We show that our approach is tackling credit assignment by propagating the
Bellman error to all states which could have been visited from the current state 𝑠, according to
the distribution of predecessor states, which is equivalent to the expected traces for a state 𝑠.
This method is closely related to expected eligibility traces (van Hasselt et al., 2020), and source
traces (Pitis, 2018), both discussed in Section 12.2.3.

12.2.1 Expected SSIPE update for the value function
In Chapter 9, we considered the tabular case and the process estimation algorithm defined in
Equation (9.1.1): with this approach, we estimate the successor matrix and value function of a
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finite MRP by 𝑀𝑡 = (Id−𝛾𝑃𝑡)−1 and 𝑉𝑡 =𝑀𝑡𝑅𝑡 where 𝑃𝑡 and 𝑅𝑡 are estimated directly by
the empirical averages. From this approach, in Section 9.4.1, we computed the corresponding
expected update, and proved that in expectation over the transition (𝑠𝑡, 𝑠

′
𝑡) observed at step 𝑡,

conditionally to the current estimate 𝑀𝑡, we have: E𝑠𝑡∼𝜌,𝑠′𝑡∼𝑃 (.|𝑠𝑡) [𝑀𝑡+1] =𝑀𝑡+
1
𝑡 𝛿𝑀 + 𝑜(1/𝑡)

with
𝛿𝑀 =𝑀𝑡 −𝑀𝑡(Id−𝛾𝑃 )𝑀𝑡 (12.2.1)

This approach lead to the Bellman–Newton update in Section 9.5.
We now consider the same approach, but for the value function. We first study in The-

orem 12.1 the expected value update E[𝑉𝑡+1], in expectation over the transition (𝑠𝑡, 𝑟𝑡, 𝑠
′
𝑡)

observed at step 𝑡. Then, in Section 12.2.2, we derive the corresponding update with function
approximators. We will see that with this approach, the successor states operator is used to
tackle the credit assigment problem and propagate the Bellman error in the environment.

Theorem 12.1. Estimate the successor matrix of a finite MRP by 𝑀𝑡 = (Id−𝛾𝑃𝑡)−1 and
𝑉𝑡 =𝑀𝑡𝑅𝑡 where 𝑃𝑡 and 𝑅𝑡 are estimated directly by the empirical averages (9.1.1). Then, in
expectation over the transition (𝑠𝑡, 𝑟, 𝑠

′
𝑡) observed at step 𝑡, conditionally to the current estimates,

we have:
E𝑠𝑡∼𝜌,𝑠′𝑡∼𝑃 (.|𝑠𝑡),𝑟∼ℛ(.|𝑠) [𝑉𝑡+1] = 𝑉𝑡 +

1

𝑡
𝛿𝑉 + 𝑜(1/𝑡) (12.2.2)

where
𝛿𝑉 =𝑀𝑡(𝑅+ 𝛾𝑃𝑉𝑡 − 𝑉𝑡) (12.2.3)

Proof. First, note that the expectation in the statement is averaged over the next step, but conditional to all
quantities �̂� , 𝑉 , etc., computed in the previous steps. In this proof, we will just write E for short.

To compute 𝑉𝑡+1 = 𝑀𝑡 · 𝑅𝑡, let us first compute the update of 𝑅𝑡+1. By (9.1.1), the latter is R𝑡+1 ←
𝑅𝑡 + 𝛿𝑅 with

𝛿𝑅 =
1

𝑛𝑠
(𝑟𝑠 − (𝑅𝑡)𝑠)1𝑠 =

1

𝑡𝜌𝑠
(𝑟𝑠 − (𝑅𝑡)𝑠)1𝑠 + 𝑜(1/𝑡). (12.2.4)

Now, the update of 𝑉𝑡+1 = 𝑀𝑡+1𝑅𝑡+1 is 𝛿𝑉 = 𝛿𝑀𝑅𝑡 +𝑀𝑡 𝛿𝑅+ 𝛿𝑀 𝛿𝑅. The last term 𝛿𝑀 𝛿𝑅 is 𝑂(1/𝑡2),
so we can drop it. We find

E[𝛿𝑉 ] = E[𝛿𝑀𝑅𝑡] + E[𝑀𝑡 𝛿𝑅] + 𝑜(1/𝑡) (12.2.5)
= E[𝛿𝑀 ]𝑅𝑡 +𝑀𝑡E[𝛿𝑅] + 𝑜(1/𝑡) (12.2.6)

since the expectations are averaged over the next step but conditional on the previous steps, which comprises
the previous values 𝑅𝑡 and 𝑀𝑡. Next,

E[𝛿𝑀 ]𝑅𝑡 =
1

𝑡
𝑀𝑡(𝛾𝑃𝑀𝑡 −𝑀𝑡 + Id)𝑅𝑡 + 𝑜(1/𝑡) (12.2.7)

=
1

𝑡
𝑀𝑡(𝛾𝑃𝑉𝑡 − 𝑉𝑡 +𝑅𝑡) + 𝑜(1/𝑡) (12.2.8)

since 𝑉𝑡 =𝑀𝑡𝑅𝑡. Next,

𝑀𝑡E[𝛿𝑅] =𝑀𝑡

∑︁
𝑠

𝜌𝑠
1

𝑡𝜌𝑠
(E[𝑟𝑠]− (𝑅𝑡)𝑠)1𝑠 + 𝑜(1/𝑡) (12.2.9)

=
1

𝑡
𝑀𝑡(𝑅−𝑅𝑡) + 𝑜(1/𝑡) (12.2.10)

since
∑︀
𝑠 E[𝑟𝑠]1𝑠 = 𝑅 and

∑︀
𝑠(𝑅𝑡)𝑠1𝑠 = 𝑅𝑡. Summing, we find E[𝛿𝑉 ] = 1

𝑡
𝑀𝑡(𝛾𝑃𝑉𝑡 − 𝑉𝑡 ++𝑅) + 𝑜(1/𝑡) as

needed.

Thus, the online update of the value function via the process estimation approach (equiv-
alently SSIPE) corresponds to a propagation of the Bellman error via 𝑀 : it estimates the
Bellman error for the model 𝑉𝑡 for transition (𝑠, 𝑟, 𝑠′) : 𝛿 = 𝑟 + 𝛾𝑉𝑡(𝑠

′) − 𝑉 (𝑠). Then, for
every state 𝑠1, it propagates the error with weight 𝑀𝑡(𝑠1, 𝑠) to update the value 𝑉𝑡(𝑠1) as
𝑉𝑡+1(𝑠1)← 𝑉𝑡(𝑠1) +𝑀𝑡(𝑠1, 𝑠)𝛿.

This update of 𝑉 is consistent with the view of 𝑀 as an expected eligibility trace, as
formalized in Section 12.2.3. Indeed, eligibility traces also update the value function at states 𝑠1
that are connected to 𝑠 via a trajectory. Actually, in expectation, these updates are the same:
with 𝜆 = 1, the eligibility trace vector at a state 𝑠 is an unbiased estimator of the column 𝑀𝑠1𝑠

(Theorem 12.3). From this viewpoint, learning 𝑀 via a parametric model, or using TD(1), are
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both ways of estimating the “predecessor states” of a state 𝑠. Eligibility traces are unbiased but
can have large variance, while the model of 𝑀 has no variance but may have bias if not learned
well.

12.2.2 Expected SSIPE update estimation with parametric models
We can generalize the value update obtained in Theorem 12.1 to any state space, with parametric
models 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) and 𝑉𝜙(𝑠). The parametric update is derived in the
following theorem, and the corresponding algorithm is specified in Algorithm 13.

Theorem 12.2. Let 𝑉𝜙 be a smooth parametric model of the value function. Define an update
of 𝑉 by setting 𝑉 tar := 𝑉𝜙 + 𝛿𝑉 with

𝛿𝑉 :=𝑀𝜃(𝑅+ 𝛾𝑃𝑉𝜙 − 𝑉𝜙), (12.2.11)

as given by (12.2.3).
Let (𝑠, 𝑠′, 𝑟𝑠) be a sample of the environment such that 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎), 𝑟𝑠 is the reward

observed in 𝑠, we define:̂︁𝛿𝜙prop-TD(𝑠, 𝑠
′, 𝑟𝑠, 𝑠1) = (𝑟𝑠 + 𝛾𝑉𝜙(𝑠

′)− 𝑉𝜙(𝑠))𝑚𝜃(𝑠1, 𝑠)𝜕𝜙𝑉𝜙(𝑠1) (12.2.12)

Then, ̂︁𝛿𝜙prop-TD is an unbiased estimate of the error between 𝑉𝜃 and 𝑉 tar:

E𝑠∼𝜌,𝑠′∼𝑃 (d𝑠′|𝑠),𝑟𝑠∼𝑅(𝑠),𝑠1∼𝜌

[︁̂︁𝛿𝜙prop-TD(𝑠, 𝑠
′, 𝑟𝑠, 𝑠1)

]︁
= −𝜕𝜙‖𝑉𝜙 − 𝑉 tar‖2𝐿2(𝜌) (12.2.13)

This involves sampling an additional state 𝑠1 ∼ 𝜌 and applying a TD update at that point,
with weight depending on 𝑀 . Notably, even if the model of 𝑀 is wrong, the true value function
is still a fixed point of (12.2.13) in expectation over 𝑠′ and 𝑟𝑠; it is the only fixed point provided
�̂� is invertible and 𝜌 > 0. This is a theoretical advantage over all other estimates of 𝑉 described
above. However, the sampling of 𝑠1 adds variance, and any negative eigenvalues in the estimate
of 𝑀 will produce divergence.

Proof. We have:

−
1

2
𝜕𝜙‖𝑉𝜙 − 𝑉 tar‖2

𝐿2(𝜌)
=

=

∫︁
𝑠1

𝜌(d𝑠1)𝜕𝜙𝑉𝜙(𝑠1)𝛿𝑉 (𝑠1)

=

∫︁
𝑠1,𝑠,𝑠′

𝜌(d𝑠1)𝜕𝜙𝑉𝜙(𝑠1)𝑀𝜃(𝑠1, d𝑠)(𝑅+ 𝛾𝑃𝑉𝜙 − 𝑉𝜙)(𝑠)

=

∫︁
𝑠1,𝑠,𝑠′

𝜌(d𝑠1)𝜌(d𝑠)𝑃 (d𝑠′|𝑠)𝜕𝜙𝑉𝜙(𝑠1)𝑚𝜃(𝑠1, 𝑠)(𝑅(𝑠) + 𝛾𝑉𝜙(𝑠
′)− 𝑉𝜙(𝑠))

This method is related to 𝑇𝐷(𝜆) and eligibility traces, as described in the next secion.

12.2.3 The expected SSIPE value update is an expected eligibility
traces update

In this section, we show the relation between the expected SSIPE value update described in
Theorem 12.2 and 𝑇𝐷(𝜆) with eligibility traces.

Eligibility traces require access to an arbitrarily long trajectory 𝜏 = (𝑠𝑡, 𝑟𝑡)𝑡∈Z (which, for
convenience, we index with both positive and negative integers, with 𝑠0 the state at the current
time). Thus, contrary to the rest of this text, we assume that the Markov process is ergodic and
that the data are coming from a stationary random trajectory of the process. In this case, the
sampling measure 𝜌 is the stationary distribution, and the law of any sequence of consecutive
observations (𝑠𝑡, . . . , 𝑠𝑡+𝑛) from the trajectory is 𝜌(d𝑠𝑡)𝑃 (𝑠𝑡,d𝑠𝑡+1) · · ·𝑃 (𝑠𝑡+𝑛−1,d𝑠𝑡+𝑛).

In the tabular setting, TD(𝜆) maintains a vector 𝑒𝑡 over states; 𝑒𝑡 is updated by

𝑒𝑡(𝑠) = 1𝑠𝑡 + 𝛾𝜆𝑒𝑡−1(𝑠) ∀𝑠 (12.2.14)
𝛿𝑉 (𝑠) = 𝑒𝑡(𝑠)(𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠𝑡)) ∀𝑠. (12.2.15)
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Algorithm 13 Policy evaluation via the expected SSIPE Value update.

Input: Policy 𝜋(𝑎|𝑠), randomly initialized 𝑀𝜃𝑀 , 𝑉𝜙 models, SSLAlgorithm;
TransitionMemory, maximum number of time steps 𝑇 , 𝐾,𝐿 ⩾ 0
repeat

for 𝐾 trajectories do
Get an initial state 𝑠0, 𝑟0 from the environment.
for 0 ⩽ 𝑡 ⩽ 𝑇 steps do do

Sample 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), execute 𝑎𝑡 and observe 𝑠𝑡+1, 𝑟𝑡+1

Store in the transition memory the transition TransitionMemory← (𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1)
end for

end for
for 𝐿 gradient steps do

Sample a transition (𝑠, 𝑟, 𝑠′) ∼ TransitionMemory.
Sample (𝑠1,_,_) ∼ TransitionMemory

Compute ̂︁𝛿𝜙prop-TD = (𝑟 + 𝛾𝑉𝜙(𝑠
′)− 𝑉𝜙(𝑠))𝑚𝜃(𝑠1, 𝑠)𝜕𝜙𝑉𝜙(𝑠1)

Update 𝑀𝜃 with SSLAlgorithm

Gradient steps: 𝜙← 𝛿 + 𝜂̂︂𝛿𝜃𝐹 fb-TD

end for
until end of learning

This can be generalized to continuous environments and to a parametric model 𝑉𝜙 of 𝑉 ,
by formally defining 𝑒 as the discounted empirical measure of the past. For a trajectory
𝜏 = (𝑠𝑡, 𝑟𝑡)𝑡∈Z we define:

𝑒𝑡(d𝑠) :=
∑︁
𝑛⩾0

(𝛾𝜆)𝑛𝛿𝑠𝑡−𝑛(d𝑠) = 𝛿𝑠𝑡(d𝑠) + 𝛾𝜆𝑒𝑡−1(d𝑠) (12.2.16)

and we can update corresponding to the parametric update of 𝑉𝜙 similarly to the tabular case
in equation (12.2.15) by

𝛿𝜙 := (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))
∫︁
𝑠

𝜕𝜙𝑉𝜙(𝑠) 𝑒𝑡(d𝑠)

= (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))
∑︁
𝑛⩾0

(𝛾𝜆)𝑛𝜕𝜙𝑉𝜙(𝑠𝑡−𝑛).

In practice, the standard way of using eligibility traces (Sutton and Barto, 2018, Section 12.2)is
to estimate the quantity 𝑒𝑡 =

∑︀
𝑛⩾0(𝛾𝜆)

𝑛𝜕𝜙𝑉𝜙(𝑠𝑡−𝑛) (which is a vector of the parameter space
of 𝑉𝜙) as:

𝑒𝑡 = 𝜕𝜙𝑉𝜙(𝑠𝑡) + 𝛾𝜆𝑒𝑡−1 (12.2.17)

then updating the value function as:̂︁𝛿𝜙TD(𝜆)(𝜏, 𝑡) = (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))𝑒𝑡 (12.2.18)

This update propagates the Bellman error to previously observed states, directly via the gradient
average computed in these states.

The following statement connects the eligibility traces update and the expected SSIPE value
update. This analysis is related to expected eligibility traces (van Hasselt et al., 2020) and source
traces (Pitis, 2018). It uses the idea of backward process introduced in Section 8.4.1, for the study
of Backward Temporal Difference. The backward process 𝑃back(𝑠

′,d𝑠) is the process obtained
from 𝑃 by reversing time: it is the law of 𝑠 given 𝑠′ in a transition 𝑠→ 𝑠′. In particular, we have
𝜌(d𝑠)𝑃 (𝑠,d𝑠′) = 𝜌(d𝑠′)𝑃back(𝑠

′,d𝑠). We can then define 𝑀back := (Id−𝛾𝑃back)
−1 the successor

state operator of the backward process. From Lemma 8.4, we know that 𝜌(d𝑠)𝑀(𝑠,d𝑠′) =
𝜌(d𝑠′)𝑀back(𝑠′,d𝑠). If 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) is a successor states model, we define
𝑀back
𝜃 (𝑠1,d𝑠2) = 𝑚𝜃(𝑠2, 𝑠1)𝜌(d𝑠2), such that this definition is consistent with 𝑀back and we

have 𝜌(d𝑠)𝑀𝜃(𝑠,d𝑠
′) = 𝜌(d𝑠′)𝑀back

𝜃 (𝑠,d𝑠′). We then have the following statement:



12.2. USING 𝑀 FOR CREDIT ASSIGNMENT 179

Theorem 12.3. Let 𝜌 be the invariant measure of the Markov process, and 𝑀𝛾𝜆 := (Id−𝛾𝜆𝑃 )−1

the successor state operator with discount factor 𝛾𝜆. We observe a transition (𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1). We
define ∆ := 𝑟𝑡+ 𝛾𝑉𝜙(𝑠𝑡+1)−𝑉𝜙(𝑠𝑡), the bellman gap for the current model 𝑉𝜙 for the transition
(𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1).

The expected parametric TD(𝜆) update (12.2.18) knowing (𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1) is observed is:

E𝜏 [̂︁𝛿𝜙TD(𝜆)(𝜏, 𝑡)|𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1] = ∆.
(︀
𝑀back
𝛾𝜆 · (𝜕𝜙𝑉𝜙)

)︀
(𝑠𝑡) = ∆.

∫︁
𝑠

𝑀back
𝛾𝜆 (𝑠𝑡,d𝑠)𝜕𝜙𝑉𝜙(𝑠)

with 𝜌-probability 1 over 𝑠𝑡.
Similarly, the expected SSIPE value update (defined in Theorem 12.2) with respect to 𝑠 ∼ 𝜌,

is equal to:

E𝑠∼𝜌
[︁̂︁𝛿𝜙prop-TD(𝑠𝑡, 𝑠𝑡+1, 𝑟𝑠, 𝑠)

]︁
= ∆.

(︀
𝑀back
𝜃 · (𝜕𝜙𝑉𝜙)

)︀
(𝑠𝑡) = ∆.

∫︁
𝑠

𝑀back
𝜃 (𝑠𝑡,d𝑠)𝜕𝜙𝑉𝜙(𝑠)

This theorem proves the relation between using 𝑀 for credit assignment and the TD(𝜆)
algorithm. If 𝑀𝜃 =𝑀𝜋 (we exactly learned the successor states operator), the update ̂︁𝛿𝜙prop-TD
propagates the Bellman error to all the states which could have been observed before arriving
in 𝑠𝑡, which is the expectation of the eligibility traces. To summarize, the TD(𝜆) algorithms
use a Monte-Carlo approach to estimate the expected traces, while we learn an approximation
of this quantity via 𝑀 . The first approach will have higher variance but no bias, while the
other one will have lower variance but potentially high bias. This difference is similar between
a Monte Carlo approach for estimating the value function, and a TD udpate.

From that point of view, this approach is similar to expected eligibility traces (van Hasselt
et al., 2020). The two approaches estimate the same quantity:

(︀
𝑀back
𝛾𝜆 · (𝜕𝜙𝑉𝜙)

)︀
(𝑠) =

∫︁
𝑠

𝑀back
𝛾𝜆 (𝑠,d𝑠)𝜕𝜙𝑉𝜙(𝑠) = E𝜏 |𝑠𝑡=𝑠

⎡⎣∑︁
𝑛⩾0

(𝛾𝜆)𝑛𝜕𝜙𝑉𝜙(𝑠𝑡−𝑛)

⎤⎦ (12.2.19)

Then, this quantity is used to propagate the Bellman error to every state which could have
been observed when arriving in 𝑠, in other words to tackle the credit assignment problem.
The difference between the two approaches is the following: Our approach learns 𝑀𝜃 ≈𝑀𝜋,
then estimates the integral

(︀
𝑀back
𝜃 · (𝜕𝜙𝑉𝜙)

)︀
(𝑠) =

∫︀
𝑠
𝜌(d𝑠)𝑚𝜃(𝑠, 𝑠)𝜕𝜙𝑉𝜙(𝑠). The approach

from van Hasselt et al. (2020) directly estimates this quantity via a function 𝑧𝜃, such that
𝑧𝜃(𝑠) ≈

(︁
𝑀back
𝛾𝜆 · (𝜕𝜙𝑉𝜙)

)︁
(𝑠). The function 𝑧𝜃(𝑠) is learned online in a supervised way, via the

udpate 𝛿𝜃 = 1
2𝜕𝜃‖𝑧𝜃(𝑠𝑡)− 𝑒𝑡‖

2. The approach is similar in Source Traces (Pitis, 2018) in the
tabular case.

Proof. By definition of eligibility traces, one has 𝑒𝑡(d𝑠) =
∑︀
𝑛⩾0(𝛾𝜆)

𝑛𝛿𝑠𝑡−𝑛 (d𝑠). Therefore, the expectation
of 𝑒𝑡 over the past of 𝑠𝑡 knowing 𝑠𝑡 is:

E𝜏 [𝑒𝑡|𝑠𝑡 = 𝑠] = E𝜏 |𝑠𝑡

⎡⎣∑︁
𝑛⩾0

(𝛾𝜆)𝑛𝜕𝜙𝑉𝜙(𝑠𝑡−𝑛)

⎤⎦
= E𝜏 |𝑠𝑡

⎡⎣∑︁
𝑛⩾0

(𝛾𝜆)𝑛
∫︁
𝑠
𝛿𝑠𝑡−𝑛 (d𝑠)𝜕𝜙𝑉𝜙(𝑠)

⎤⎦
= E𝜏 |𝑠𝑡

⎡⎣∫︁
𝑠
𝜕𝜙𝑉𝜙(𝑠)

∑︁
𝑛⩾0

(𝛾𝜆)𝑛𝛿𝑠𝑡−𝑛 (d𝑠)

⎤⎦
=

∫︁
𝑠

∑︁
𝑛⩾0

(𝛾𝜆)𝑛𝑃𝑛back(𝑠𝑡, d𝑠)𝜕𝜙𝑉𝜙(𝑠)

=
(︁
𝑀back
𝛾𝜆 · 𝜕𝜙𝑉𝜙

)︁
(𝑠𝑡)
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Hence, we have:

E𝜏 [̂︁𝛿𝜙TD(𝜆)(𝜏, 𝑡)|𝑠𝑡, 𝑟𝑡, 𝑠𝑡+1] = (𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))E𝜏 |𝑠𝑡 [𝑒𝑡]

= Δ
(︁
𝑀back
𝛾𝜆 · 𝜕𝜙𝑉𝜙

)︁
(𝑠𝑡)

On the other side, we have:

E𝑠∼𝜌
[︁̂︁𝛿𝜙prop-TD(𝑠𝑡, 𝑠𝑡+1, 𝑟𝑠, 𝑠)

]︁
= E𝑠∼𝜌 [(𝑟𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1)− 𝑉𝜙(𝑠𝑡))𝑚𝜃(𝑠, 𝑠𝑡)𝜕𝜙𝑉𝜙(𝑠)]

= Δ

∫︁
𝑠
𝜌(d𝑠)𝑚𝜃(𝑠, 𝑠𝑡)𝜕𝜙𝑉𝜙(𝑠)

= Δ.
(︁
𝑀back
𝜃 · (𝜕𝜙𝑉𝜙)

)︁
(𝑠𝑡)
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Chapter 13

The multi-goal RL setting, sparse
rewards and infinitely sparse
rewards

13.1 An introduction to multi-goal RL

Most standard reinforcement learning (RL) methods fail when faced with very sparse reward
signals. Multi-task reinforcement learning attempts to solve this problem by presenting agents
with a diverse set of tasks and learn a task-dependent policy in the hope that the agent could
leverage knowledge from some tasks on others (Jaderberg et al., 2016; Hausman et al., 2018;
Nagabandi et al., 2019). Multi-goal reinforcement learning, introduced by Kaelbling (1993), is
a sub-field of multi-task RL, where the different tasks consist in reaching particular goals in the
environment. This can typically be applied in robotics tasks: for example, a robotic arm needs
to push a cube towards a goal position given as input at the beginning of the episode (Plappert
et al., 2018; Andrychowicz et al., 2020). It can also be used in a hierarchical pipeline, to do
planning by selecting goals an agent should reach, to solve a more complex task (Nair et al.,
2018; Nasiriany et al., 2019).

Multi-goal reinforcement learning was first introduced in the finite MDP setting (Kaelbling,
1993). Since then, the sample efficiency of multi-goal RL has been studied in that setting (Tar-
bouriech et al., 2020). Universal Value Function Approximators (Schaul et al., 2015) show how
to adapt standard RL algorithm with function approximators such as Temporal Difference and
Q-learning in the multi-goal setting, by learning multi-goal value functions.

One of the most important issue of the multi-goal setting is the sparsity of the reward.
Indeed, the goal-oriented reward is usually defined as 𝑅𝜀(𝑠, 𝑔) which is 1 if the current agent is
at a distance to the goal less than 𝜀, 0 everywhere else. In that case, in a continuous environment
of dimension 𝑑, the probability of reaching a goal with a random exploration policy scales as
𝑂(𝜀𝑑). Because of the curse of dimensionality, an agent might never see any goal. In this Part,
we call this the vanishing reward phenomena. Reward shaping (Ng et al., 1999) can be a way to
guide the policy towards goals and remove the sparsity issue, but finding a reward both simpler
for the agent and such that than the learned policies transfer to the original reward is not easy,
and require a lot of human expert effort. A very successful approach is to re-use trajectories
observed while aiming at a goal 𝑔 to learn how to reach other goals 𝑔′ with hindsight : if during
a trajectory aiming at 𝑔 the agent randomly observes a goal 𝑔′, then that same trajectory can
be used to learn how to reach 𝑔′ as if 𝑔′ was the target goal from the beginning. This principle
was introduced with Hindsight Experience Replay (HER) (Andrychowicz et al., 2017), and lead
to other methods (Rauber et al., 2019; Li et al., 2020; Fang et al., 2019; Manela and Biess,
2021). One issue of hindsight methods is their bias (Plappert et al., 2018; Manela and Biess,
2021), which corresponds to a well-identified psychological bias (Fischhoff, 1975) and can lead
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to low-return policies. We study the bias of HER in Chapter 14, and show that it is actually
unbiased in deterministic environments.

An other approach for multi-goal RL is to learn via curriculum learning (Florensa et al.,
2017): by giving the agent simple goals to achieve at the beginning (closer to the starting point),
the agent will be able to learn how to reach them. Then, a teacher can increase the difficulty
during training. Multiple approaches developped goal sampling strategies (Eppe et al., 2019;
Pitis et al., 2020; Fang et al., 2019; Colas et al., 2019). In particular Venkattaramanujam et al.
(2019) introduce a method to sample goals without using the goal space distance, which might
not be correlated with the difficulty to reach a goal.

In this chapter, we briefly introduce multi-goal RL. First, we formalize the multi-goal setting,
and how it can be seen as standard RL via the augmented multi-goal environment. Then, we
introduce standard approaches, especially our two main baselines: Universal value function
approximators and Hindsight experience replay. Then, in Section 13.2, we define the infinitely
sparse reward limit, and how standard objects (reward, value function, successor states, return,
...) translates when considering infinitely sparse rewards. Moreover, we show that all objects
are consistent between the sparse and infinitely sparse settings. Then, in Chapters 16 and 15
we will derive unbiased actor critics and Q-learning methods for multi-goal RL via the infinitely
sparse reward viewpoint.

13.1.1 Multi-Goal Reinforcement Learning and Vanishing Rewards
We define a multi-goal RL environment as a variant of a Markov decision process (MDP)
including a goal space. The MDP is defined by a state-space 𝒮, an action space 𝒜 (discrete
or continuous), a discount factor 𝛾, and a transition probability measure 𝑃 (d𝑠′|𝑠, 𝑎) which
describes the probability that the next state is 𝑠′ after taking action 𝑎 in state 𝑠. For stochastic
continuous environments, this is generally a continuous probability distribution over 𝑠′, hence
the notation d𝑠′ which represents the probability to be in an infinitesimal set d𝑠′ around 𝑠′, as
we used in Part IV for the successor state operator.

The goal space is a set 𝒢 together with a function 𝜙 : 𝒮 → 𝒢 defining for every state 𝑠 a
corresponding goal 𝑔 = 𝜙(𝑠), which is the goal achieved by state 𝑠. The objective of the agent
is to reach a goal 𝑔. This is usually formalized by defining a reward function 𝑅𝜀(𝑠, 𝑔) as 1 when
a given distance between the achieved goal 𝜙(𝑠) and the target 𝑔 is lower than a fixed value 𝜀:

𝑅𝜀(𝑠, 𝑔) := 1‖𝜙(𝑠)−𝑔‖⩽𝜀 (13.1.1)

for a fixed norm ‖.‖ on 𝒢. Thus, each goal 𝑔 ∈ 𝒢 defines an ordinary MDP with reward
𝑅(𝑠, 𝑔), and 𝑄 and value functions 𝑄*

𝜀(𝑠, 𝑎, 𝑔), 𝑉 𝜋𝜀 (𝑠, 𝑔). A goal-conditioned policy 𝜋(𝑎|𝑠, 𝑔) is
a probability distribution over the action space 𝒜 for every (𝑠, 𝑔) ∈ 𝒮 × 𝒢.

We assume that, for a multi-goal policy 𝜋(𝑎|𝑠, 𝑔), we are able to sample trajectories in
the environment by sampling a goal 𝑔 ∼ 𝜌𝒢(d𝑔), a starting state 𝑠0 ∼ 𝜌0(d𝑠0|𝑔), and then by
sampling at step 𝑡 the action 𝑎𝑡 ∼ 𝜋(𝑎|𝑠𝑡, 𝑔) and the next state 𝑠𝑡+1 ∼ 𝑃 (d𝑠′|𝑠𝑡, 𝑎𝑡). We use
the notation 𝑃𝜋(d𝑠′|𝑠, 𝑔) :=

∫︀
𝑎
𝜋(𝑎|𝑠, 𝑔)𝑃 (d𝑠′|𝑠, 𝑎).

13.1.2 The augmented state-goal process
The multi-goal setting can be seen as a standard multi-goal environment, via the augmented
state-goal process. Informally, we assume that the agent observes at every time-step the state
𝑠𝑡 together with the target goal 𝑔. The goal is now part of the observation. After using action
𝑎𝑡 and reaching a state 𝑠𝑡+1, the new observation is (𝑠𝑡+1, 𝑔), as the target goal is unchanged.

Formally, if ℳ is a multi-goal environment, with the notation above, we define ℳ̃ the
Markov decision process as ℳ̃ := ⟨𝒮,𝒜, 𝑃 , �̃�, 𝛾⟩, with

• The state space 𝒮 is defined as: 𝒮 := 𝒮 × 𝒢. A state 𝑠 in the state-goal process is a tuple
𝑠 = (𝑠, 𝑔).

• The action space is unchanged.
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• The transition operator is defined as 𝑃 (d𝑠′|𝑠, 𝑎) = 𝑃 (d𝑠′,d𝑔′|𝑠, 𝑔, 𝑎) = 𝑃 (d𝑠′|𝑠, 𝑎)𝛿𝑔(d𝑔′)

• The reward is �̃�𝜀(𝑠) = �̃�𝜀((𝑠, 𝑔)) = 𝑅𝜀(𝑠, 𝑔).

A policy in the augmented environment ℳ̃, 𝜋(𝑎|𝑠) corresponds to the multi-goal policy 𝜋(𝑎|𝑠, 𝑔)
in the multi-goal environment. Similarly, the multi-goal value function 𝑉𝜀(𝑠, 𝑔) corresponds to
a standard value function in the augmented environment.

This mathematical construction is similar to the augmented state-action process defined in
Section 7.9.1. In that case, we saw that applying standard policy evaluation method for the
value function in the state-action process lead to algorithms to learn the 𝑄-function. Similarly,
here, we will see that standard RL algorithms can be directly applied to the multi-goal setting
via the augmented state-goal process.

13.1.3 Universal Value Function Approximations.
Universal Value Function Approximators (UVFA) (Schaul et al., 2015) extend the classical
Q-learning and Temporal Difference (TD) algorithms to the multi-goal setting. It learns the
goal-conditioned value-function 𝑉 𝜋𝜀 (𝑠, 𝑔) or 𝑄-function 𝑄*

𝜀(𝑠, 𝑎, 𝑔) corresponding to the sparse
rewards 𝑅𝜀(𝑠, 𝑔) for every state-goal pair, with function approximation, via a TD algorithm.

In practice, we consider a parametric function 𝑄𝜃(𝑠, 𝑔), and we want to learn 𝜃 such that
𝑄𝜃(𝑠, 𝑔) approximates 𝑄*

𝜀(𝑠, 𝑔). If 𝜃 is our current estimate and 𝑄tar a target 𝑄-function the Q-
learning UVFA stochastic update ̂︀𝛿𝜃UVFA is defined as follows. We consider an exploration policy
𝜋expl(𝑎|𝑠, 𝑔). When a transition (𝑠, 𝑎, 𝑠′, 𝑔) is observed, with 𝑎 ∼ 𝜋expl(.|𝑠, 𝑔) and 𝑠′ ∼ 𝑃 (.|𝑠, 𝑔),̂︀𝛿𝜃UVFA is:

̂︀𝛿𝜃UVFA(𝑠, 𝑎, 𝑠
′, 𝑔) := −1

2
𝜕𝜃

(︂
𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅𝜀(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄tar(𝑠

′, 𝑎′, 𝑔)

)︂2

(13.1.2)

Then, we update 𝜃 with 𝜃 ← 𝜃 + 𝜂 ̂︀𝛿𝜃UVFA, where 𝜂 is the learning rate. The update ̂︀𝛿𝜃UVFA

is an unbiased estimate of −1/2𝜕𝜃‖𝑄𝜃 − 𝑇 ·𝑄tar‖2 where 𝑇 is the optimal Bellman operator,
𝑇 · 𝑄(𝑠, 𝑎, 𝑔) = 𝑅𝜀(𝑠, 𝑔) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎) [sup𝑎′ 𝑄(𝑠′, 𝑎′, 𝑔)], whose unique fixed point is 𝑄*

𝜀. In
particular, in the tabular setting, this guarantees that a function 𝑄∞ is a fixed point of UVFA
if and only if 𝑇 ·𝑄∞ = 𝑄∞, which means 𝑄∞ = 𝑄*

𝜀.
Formally, 𝑄-learning with UVFA exactly corresponds to the DQN algorithm on the aug-

mented state-goal environment defined in the previous section. Let us define �̃�𝜃(𝑠, 𝑎) =
𝑄𝜃(𝑠, 𝑎, 𝑔) (for 𝑠 = (𝑠, 𝑔)), and similarly for �̃�tar. Consider we observe a transition (𝑠, 𝑎, 𝑠′, 𝑔).
Then, we have

̂︀𝛿𝜃UVFA(𝑠, 𝑎, 𝑠
′, 𝑔) = −1

2
𝜕𝜃

(︂
�̃�𝜃(𝑠, 𝑎)− �̃�𝜀(𝑠)− 𝛾 sup

𝑎′
�̃�tar(𝑠

′, 𝑎′)

)︂2

= ̂︀𝛿𝜃DQN(𝑠, 𝑎, 𝑠
′)

where 𝑠 = (𝑠, 𝑔), 𝑠′ = (𝑠′, 𝑔), and ̂︀𝛿𝜃DQN is the standard Deep Q-learning update in the
augmented state space ℳ̃, for model �̃�𝜃(𝑠, 𝑎).

This equivalence between UVFA and DQN in the augmented state space has a main
limitation: it means the algorithm is considering every problem defined by a goal 𝑔 as an
independent environment. Indeed, the augmented multi-goal environment formalism forgets that
the transition operator 𝑃 (d𝑠′,d𝑔′|𝑠, 𝑎, 𝑔) can be factorized as a transition operator independent
of 𝑔 𝑃 (d𝑠′|𝑠, 𝑎) and that goals stay constant. Or equivalently, it doesn’t take into account that
a trajectory in �̃� , (𝑠0, 𝑟0, 𝑎0, 𝑠1, 𝑟1, 𝑎1...) = ((𝑠0, 𝑔), 𝑟0, 𝑎0, (𝑠1, 𝑔), 𝑟1, 𝑎1...) can be decomposed
into a goal-independent trajectory (𝑠0, 𝑎0, 𝑠1, 𝑎1...) (with 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡)), and a sequence of
rewards defined as 𝑟𝑘 = 𝑅𝜀(𝑠𝑘, 𝑔). Hence, an algorithm which can be defined entirely with the
augmented multi-goal environment formalism cannot be leveraging some of the structure of the
multi-goal setting. For example, such an algorithm cannot use the structure of a multi-goal
environment to compute, from a trajectory (𝑠0, 𝑎0, 𝑠1, 𝑎1...), the sequence of rewards for any goal
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in 𝒢 (not necessarily the original goal), and thus cannot leverage all the mutual information
between goals. In practice, some generalization between goals will occur, because of the choice
of the parametric function approximator.

Furthermore, a method defined in the multi-goal augmented environment, such as UVFA,
will be limited by the vanishing rewards issue, presented in the next section.

13.1.4 UVFA and vanishing rewards.

A major problem with multi-goal setups is the low probability with which each specific goal 𝑔 is
achieved, since rewards are observed only in a ball of radius 𝜀 around the goal. In a continuous
noisy environment of dimension 𝑛, reaching a goal up to precision 𝜀 becomes almost surely
impossible when 𝜀→ 0. With noise in dimension 𝑛, the probability to exactly reach a predefined
goal 𝑔 scales like 𝑂(𝜀𝑛). In particular, the 𝑄 and value functions vanish like 𝑂(𝜀𝑛) when 𝜀 is
small. The situation is different in continuous deterministic environments. If it is possible to
reach a goal exactly by selecting the right action, then the optimal 𝑄-function 𝑄*

𝜀 does not
vanish, even if 𝜀 = 0.

With the UVFA update, the probability to observe a reward 1‖𝜙(𝑠)−𝑔‖⩽𝜀 vanishes like 𝑂(𝜀𝑛)
for continuous exploration policies. So even if 𝑄*

𝜀 itself does not vanish, the learning algorithm
for 𝑄*

𝜀 may vanish. In practice, in an environment of dimension 𝑛 = 6, UVFA is not able to
learn anymore (experiment in Fig. 16.1). This vanishing issue cannot be solved solely by an
exploration strategy: the issue is not the lack of diversity in visited states but rather the state
space is too large to be visited by an exploration trajectory (Andrychowicz et al., 2017). Solving
the issue of sparse rewards requires gathering some information even from failing trajectories
which do not reach their initial goal, namely, leveraging the structure of multi-goal environments
by using that every state achieves some goal. This the case in Hindsight Experience Replay but
not UVFA.

In this work we study algorithms which leverage the multi-goal structure and do not vanish
even in the limit 𝜀→ 0. We will focus on unbiased algorithms, which ensure that the true 𝑄 or
value function is indeed a fixed point, by stochastic gradient arguments. UVFA is unbiased
but vanishes when 𝜀→ 0. HER does not vanish, but is known to be biased. In Section 14.2
we prove that HER is unbiased in deterministic environments. Chapters 15 and 16 present
non-vanishing, unbiased algorithms for stochastic environments; however, they are less efficient
than HER in deterministic environments.

13.1.5 Hindsight Experience Replay

Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is an algorithm for multi-goal
RL, which removes the issue of vanishing rewards, and introduce generalization between goals.

It leverages information between goals via the following principle: trajectories aiming at
a goal 𝑔 but reaching a goal 𝑔′ can be used for learning exactly as if the trajectory had been
aiming at 𝑔′ from start. Formally, HER is defined as follows: first, we consider an off-policy
algorithm, such as DQN (Mnih et al., 2015) or DDPG (Lillicrap et al., 2015). These algorithms
have two steps: first aquire a set of trajectories, and add them to a replay buffer. Then, sample
some transitions from this replay buffer and update the current estimate 𝑄𝜃(𝑠, 𝑎, 𝑔) of 𝑄*

𝜀 . HER
is acquiring trajectories similarly, but changes the way transitions are sampled from the replay
buffer: first, samples a trajectory 𝜏 from the buffer, 𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...). Then, it samples
two random integers 0 ⩽ 𝐾 ⩽ 𝐿, and return the transition (𝑠𝐾 , 𝑎𝐾 , 𝑠𝐾+1, 𝑔

′), where 𝑔′ is a
re-sampled goal that is, with some probability, either 𝑔′ = 𝑔 (the original goal) or 𝑔′ = 𝜙(𝑠𝐿),
the goal achieved by the 𝐿-th state in the trajectory. This transition is then used to perform a
standard update for the transition (𝑠𝐾 , 𝑎𝐾 , 𝑠𝐾+1, 𝑔

′) for instance with DQN:

̂︀𝛿𝜃HER(𝜏,𝐾,𝐿) :=
1

2
𝜕𝜃

(︂
𝑄𝜃(𝑠𝐾 , 𝑎𝐾 , 𝑔

′)−𝑅𝜀(𝑠𝐾 , 𝑔′)− 𝛾 sup
𝑎′
𝑄tar(𝑠𝐾+1, 𝑎

′, 𝑔′)

)︂2

(13.1.3)

= ̂︀𝛿𝜃UVFA(𝑠𝐾 , 𝑎𝐾 , 𝑠𝐾+1, 𝑔
′) (13.1.4)
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where 𝑔′ = 𝑔 or 𝑔′ = 𝜙(𝑠𝐿). A more formal definition is given in Chapter 14.
First, we can remark that the HER update does not vanish even for 𝜀 = 0: with nonzero

probability, 𝐾 = 𝐿 and 𝑔′ = 𝜙(𝑠𝐿), so that 𝑅𝜀(𝑠𝐾 , 𝑔′) = 1. Then, we can add that HER
introduces some generalization between goals: a trajectory 𝜏 sampled while aiming at a goal 𝑔
is then used to learn how to reach every goal 𝑔′ = 𝜙(𝑠𝐿) achieved during that trajectory.

This strategy has proved successful in practice, but is known to be biased (Manela and Biess,
2021; Lanka and Wu, 2018). In their request for research for robotic multi-goal environments,
Plappert et al. (2018) list the necessity for an unbiased version of HER, as such bias can lead
to low-return policies. In Chapter 14, we study the bias of HER. First, we show (theoretically
and empirically) that HER is biased, and can converge to low-return policies. Then, we show
that it is actually unbiased in deterministic environments, which covers many standard cases
such as robotics.

13.2 The Infinitely Sparse Reward Limit

While Hindsight Experience Replay is performing well in many environments, it is known to be
biased in general stochastic environments and can learn low-return policies. In this part of the
thesis, we will define unbiased algorithm for multi-goal RL, resilient to the vanishing reward issue
presented above, and introducing some generalization between goals. Our approach is to replace
sparse rewards 𝑅𝜀(𝑠, 𝑔) = 1‖𝜙(𝑠)−𝑔‖⩽𝜀 by infinitely sparse Dirac rewards 𝑅(𝑠,d𝑔) := 𝛿𝜙(𝑠)(d𝑔),
and then use our knowledge on the Dirac function to derive our updates.

In continuous state spaces, the reward is usually defined as 𝑅𝜀(𝑠, 𝑔) = 1‖𝜙(𝑠)−𝑔‖⩽𝜀. When
𝜀→ 0, the probability of reaching the reward with a stochastic policy goes to 0, and for any
stochastic policy, the value function 𝑉 𝜋𝜀 (𝑠, 𝑔) converges to 0 as well. To avoid this vanishing
issue, we need a scaling factor, and consider the reward 1

𝜆(𝜀)𝑅𝜀(𝑠, 𝑔), with 𝜆(𝜀) the volume
of the ball of size 𝜀 in goal space. When 𝜀 → 0, this rescaled reward converges to the Dirac
reward :

𝑅(𝑠,d𝑔) := 𝛿𝜙(𝑠)(d𝑔), (13.2.1)

where 𝛿𝑥 is the Dirac measure at 𝑥. Intuitively, the Dirac reward 𝑅(𝑠,d𝑔) is infinite if the goal
is reached (𝜙(𝑠) = 𝑔) and 0 elsewhere. Formally, the reward is not a function but a measure on
the goal space 𝒢 parametrized by the state 𝑠. This is formalized in the following proposition.
This result well-known, but still formalize it in this text as we will extend this result on limit
reward when 𝜀→ 0 to a limit return, or a limit value function.

Proposition 13.1. Consider for every 𝑠 the reward measure over 𝒢:

1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)𝜆(d𝑔) =

1

𝜆(𝜀)
1‖𝜙(𝑠)−𝑔‖⩽𝜀𝜆(d𝑔). (13.2.2)

where 𝜆(𝜀) is the volume of the ball of radius 𝜀 for the Lebesgue measure 𝜆(𝐵(., 𝜀)). Then, the
measure 1

𝜆(𝜀)𝑅𝜀(𝑠, 𝑔)𝜆(d𝑔) converges weakly to 𝛿𝜙(𝑠)(d𝑔) when 𝜀→ 0.

Proof. Let 𝑓(𝑔) be a 1-Lipschitz test function. We have:⃒⃒⃒⃒∫︁
𝑔∈𝒢

𝑓(𝑔)

(︂
1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)𝜆(d𝑔)− 𝛿𝜙(𝑠)(d𝑔)

)︂⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝑓(𝜙(𝑠))−

∫︁
𝑔∈𝒢

𝑓(𝑔)
1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)𝜆(d𝑔)

⃒⃒⃒⃒
⩽
∫︁
𝑔∈𝐵(𝜙(𝑠),𝜀)

|𝑓(𝜙(𝑠))− 𝑓(𝑔)|
1

𝜆(𝜀)
𝜆(d𝑔)

⩽
∫︁
𝑔∈𝐵(𝜙(𝑠),𝜀)

𝜀
1

𝜆(𝜀)
𝜆(d𝑔) = 𝜀

Hence: ∫︁
𝑔∈𝒢

𝑓(𝑔)
1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)𝜆(d𝑔)→𝜀→0

∫︁
𝑔∈𝒢

𝑓(𝑔)𝛿𝜙(𝑠)(d𝑔) (13.2.3)

However, even after such a scaling, the UVFA update still vanishes with high probability for
small 𝜀 (this just scales things by 1/𝜆(𝜀)). We will build algorithms that work directly in the limit
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𝜀 = 0: replacing the sparse reward 𝑅𝜀(𝑠, 𝑔) by the infinitely sparse reward 𝑅(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔)
will allow us to leverage the Dirac structure to remove the vanishing rewards issue.

Interestingly, the infinitely sparse reward is independent of the goal space norm, which
might not be correlated to the real task we want to solve. For instance, if a wall is between
the agent and its target goal, the distance might be below 𝜀 in the goal space 𝒢, while the
task is not solved. This was already pointed out and solved via learned distances in goal space
in Venkattaramanujam et al. (2019).

13.2.1 Motivation: Computing the exact contribution of sparse re-
wards.

In this section, we explain how to leverage the multi-goal sparse reward structure, via the
infinitely sparse reward setting. The key idea is that, with 𝜀 = 0, the contribution of the reward
term in the Bellman equation can be computed exactly in expectation. Infinitely sparse rewards
can be treated algebraically.

The following derivation is informal, but gives an intuition on our methods. A formal
approach requires a proper definition of value functions and 𝑄-functions with infinitely sparse
rewards, as detailed in Chapters 15 and 16.

Let us start with the expectation of the UVFA update (13.1.2) with 𝜀 > 0 and rewards
rescaled by 1/𝜆(𝜀):

𝛿𝜃UVFA = E𝑠,𝑎,𝑠′,𝑔
[︁ ̂︀𝛿𝜃UVFA(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁

= −1

2
𝜕𝜃E𝑠,𝑎,𝑔,𝑠′

[︃(︂
𝑄𝜃(𝑠, 𝑎, 𝑔)−

1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)− 𝛾max

𝑎′
𝑄tar(𝑠

′, 𝑎′, 𝑔)

)︂2
]︃

= E𝑠,𝑎,𝑔
[︂
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)

1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔)

]︂
− E𝑠,𝑎,𝑔,𝑠′

[︁
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)

(︁
𝑄𝜃(𝑠, 𝑎, 𝑔)− 𝛾max

𝑎′
𝑄tar(𝑠

′, 𝑎′, 𝑔)
)︁]︁
.

This update will not be efficient for small 𝜀, because 𝑅𝜀(𝑠, 𝑔) is 0 most of the time, hence
have high variance. While the expectation of the first term E𝑠,𝑎,𝑔

[︁
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)

1
𝜆(𝜀)𝑅𝜀(𝑠, 𝑔)

]︁
is

nonzero because of the scaling factor 1/𝜆(𝜀), the reward is almost never observed. The agent
will almost never reach its goal, but once in a while, with low probability, observe a huge reward.
This is a variance issue caused by the vanishing rewards

But when 𝜀 → 0, the rescaled reward 1
𝜆(𝜀)𝑅𝜀(𝑠, 𝑔) converges to the Dirac reward 𝛿𝜙(𝑠)

(Proposition 13.1). Therefore, we can rewrite this first term as

1

𝜆(𝜀)
E𝑠,𝑎,𝑔 [𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)𝑅𝜀(𝑠, 𝑔)]→𝜀→0 E𝑠,𝑎,𝑔

[︀
𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝑔)𝛿𝜙(𝑠)(d𝑔)

]︀
= E𝑠,𝑎 [𝜕𝜃𝑄𝜃(𝑠, 𝑎, 𝜙(𝑠))] .

In this expression, sparse reward issues are avoided, just by taking the goal 𝑔 = 𝜙(𝑠) associated
with the currently visited state 𝑠. Instead of waiting to reach a goal to update the 𝑄-function,
this updates the 𝑄-function for the currently realized goal. The resulting algorithm, 𝛿-DQN, is
described in Chapter 15. The proper mathematical treatment A similar treatment holds for
actor-critic methods (Chapter 16). (Sections 16.1–16.2).

The two following sections are technical results for multi-goal RL with infinitely sparse
rewards. In Section 13.2.2, we define the goal-conditioned successor states, which corresponds
to the successor states operator (as studied in Part IV) when the agent follow goal-conditionned
policy 𝜋(.|., 𝑔) for a fixed goal 𝑔. Then, we define the successor goals measure 𝑀𝜋(𝑠, 𝑔, d𝑔′),
which measures the expected discounted time spent in d𝑔′ when starting from 𝑠 and following
the policy 𝜋(.|., 𝑔). Then, in Section 13.3, we consider the continuous density assumption:
informally, it assumes that every probability measure 𝑃, 𝜌, ... are continuous with respect to
Lebesgue measure (see Assumption 13.1). Under this assumption, we define the multi-goal
value measure in Theorem 13.5, and show in Theorems 13.7, 13.8 and 13.9 that the best policies
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for infinitely sparse Dirac rewards corresponds to the asymptotically best policies for sparse
reward 𝑅𝜀 when 𝜀 → 0. These results confirms that, even for finding an efficient policy in a
multi-goal environment with a sparse (but not infinitely) reward 𝑅𝜀, finding an efficient policy
for infinitely sparse rewards is a coherent strategy.

13.2.2 Goal-conditioned successor states, and successor goals

We now define the goal-conditioned successor states, and the successor goals measure𝑀𝜋(𝑠, 𝑔, d𝑔′).
These objects can be easily defined via the successor states approach defined in Chapter 6,
applied to the augmented multi-goal MDP defined in Chapter 13.

Definition-Theorem 13.2. We define the goal-conditioned successor measure as:

𝜈𝜋(d𝑠|𝑠0, 𝑔) := (1− 𝛾)𝜓*�̃�
𝜋(𝑠0, 𝑔, ., .) (13.2.4)

where 𝜓(𝑠, 𝑔) ↦→ 𝑠, and 𝜓* is the push-forward measure. The goal-conditioned successor measure
𝜈𝜋(d𝑠|𝑠0, 𝑔) is the expected discounted time spent in d𝑠 when starting from 𝑠0 and following the
policy conditioned by 𝑔: 𝜋(.|., 𝑔).

The goal-conditioned successor measure is a well defined probability measure over 𝒮 for
every 𝑠0, 𝑔. We have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)
∑︁
𝑡⩾0

𝛾𝑡(𝑃𝜋)𝑡(d𝑠|𝑠0, 𝑔) (13.2.5)

It satisfies the fixed-point Bellman equation:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0(d𝑠) + E𝑎∼𝜋(d𝑎|𝑠0,𝑔),𝑠1∼𝑃 (d𝑠1|𝑠0,𝑎) [𝜈
𝜋(d𝑠|𝑠0, 𝑔)] (13.2.6)

Proof. Consider the successor state operator �̃�𝜋(𝑠1, 𝑔1,d𝑠2, d𝑔2) defined on the goal-augmented state space
defined in Section 13.1.2. We have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)
∑︁
𝑡⩾0

𝛾𝑡𝜓*𝑃
𝑡(d𝑠, d𝑔′|𝑠0, 𝑔) (13.2.7)

and we know that 𝑃 (d𝑠,d𝑔′|𝑠0, 𝑔) = 𝑃𝜋(d𝑠|𝑠0, 𝑔)𝛿𝑔(d𝑔′), hence 𝑃 𝑡(d𝑠,d𝑔′|𝑠0, 𝑔) = (𝑃𝜋)𝑡 (d𝑠|𝑠0, 𝑔)𝛿𝑔(d𝑔′),
and:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)
∑︁
𝑡⩾0

𝛾𝑡𝜓*
(︀
(𝑃𝜋)𝑡 (d𝑠|𝑠0, 𝑔)𝛿𝑔(d𝑔′)

)︀
= (1− 𝛾)

∑︁
𝑡⩾0

𝛾𝑡 (𝑃𝜋)𝑡 (d𝑠|𝑠0, 𝑔) (13.2.8)

We know that the successor states operator is a measure of total mass 1
1−𝛾 , hence with the (1− 𝛾) rescaling,

the goal-contitioned successor measure is a probability density.
The Bellman equation is a consequence of Proposition 7.10

We can now define the successor-goal measure.

Definition-Theorem 13.3. The successor-goal measure is defined as:

𝑀𝜋(𝑠, 𝑔, .) :=
1

1− 𝛾
𝜙*𝜈

𝜋(.|𝑠, 𝑔) (13.2.9)

We define the Bellman operator mapping 𝑀(𝑠, 𝑔1,d𝑔2) to 𝑇𝜋 ·𝑀 with

(𝑇𝜋 ·𝑀)(𝑠, 𝑔1,d𝑔2) = 𝛿𝜙(𝑠)(d𝑔2) + 𝛾E𝑎∼𝜋(𝑎|𝑠,𝑔1),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) [𝑀(𝑠′, 𝑔1,d𝑔2)] , (13.2.10)

Then, 𝑀𝜋 is a fixed point of 𝑇𝜋.

Proof. This result is a direct consequence of Proposition 7.10
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13.3 The continuous density setting

We will now consider two questions:

1. How can we define the multi-goal value function with infinitely sparse rewards?

2. We replaced sparse reward 𝑅𝜀 (with small 𝜀) by infinitely sparse rewards. But are the
best policies the same for the two problems, for a small 𝜀?

To tackle these questions, we will consider the continuous density assumption: informally, it
assumes that every probability measure 𝑃, 𝜌, ... are continuous with respect to Lebesgue measure
(see Assumption 13.1). Under this assumption, we can define the multi-goal value measure in
Theorem 13.5. Then, we can prove in Theorems 13.7, 13.8 and 13.9 the equivalence between
environments with the infinitely sparse Dirac reward, and the sparse rewards 𝑅𝜀 when 𝜀→ 0.

We first introduce and discuss the continuous density assumption in Section 13.3.1. Then in
Section 13.3.2, we define the multi-goal value measure under the continuous density assumption.
Finally, in Section 13.3.3 we study the equivalence between environments. sparse rewards 𝑅𝜀
when 𝜀→ 0 infinitely sparse rewards. All the proofs are in Section 13.3.4.

13.3.1 The continuous density assumption

Here, we introduce the continuity assumption, which will be used in this section, to formalize
the relation between the multi-goal formulation with infinitely sparse Dirac rewards with the
standard formulation with reward located in a neighborhood of size 𝜀 around the goal, and to
derive a policy gradient theorem.

Assumption 13.1. We assume that 𝒮 and 𝒢 are finite dimensional vector spaces, and that 𝒜 is
a compact subset of a finite dimensional vector space. Moreover, 𝜌𝒢(d𝑔) is absolutely continuous
with respect to the Lebesgue measure on 𝒢, and we write 𝑝𝒢 its density: 𝑝𝒢(𝑔)𝜆(d𝑔), where 𝑝𝒢 is a
continuous function. Similarly, 𝜌(d𝑠0|𝑔) the distribution of initial states given a goal is supposed
to be absolutely continuous with respect the Lebesgue measure: 𝜌(d𝑠0|𝑔) = 𝑝0(𝑠0|𝑔)𝜆(d𝑔), with
𝑝0 continuous. The transition probability measure 𝑃 (d𝑠′|𝑠, 𝑎) is absolutely continuous with
respect to the Lebesgue measure on 𝒮, and we write 𝑝(𝑠′|𝑠, 𝑎) its density, which is continuous.

We assume that supp 𝜌𝒢 is compact and that there is a compact subset 𝐾𝒮 ⊂ 𝒮 such that
for every 𝑠, 𝑎 ∈ 𝒮,𝒢, supp𝑃 (d𝑠′|𝑠, 𝑎) ⊂ 𝐾𝒮 .

We consider only policies in Π, the set of policies 𝜋 such that 𝜋(𝑎|𝑠, 𝑔) is a continuous
function of 𝑎, 𝑠, 𝑔.

We assume dim𝒢 ⩽ 𝒮 and 𝜙 is a surjective linear function, and 𝜙(𝒮) = 𝒢.

Let us comment Assumption 13.1. First, we require 𝑃 , 𝜌𝒢 , and 𝜌0 to be absolutely continuous
with respect to Lebesgue measure. This is typically true in environments such that, at every
step, the environment adds a noise absolutely continuous with respect to Lebesgue measure (for
instance Gaussian) to the position. On the contrary, in environments such that the agent lies in
a submanifold of dimension lower than dim𝒮, the assumption is not satisfied. The assumption
that 𝜙 is linear is often satisfied in practice, when the achieved goal of a state corresponds to a
some coordinates of 𝑠. For instance, in FetchReach, the state 𝑠 contains information on the
position and velocity of the robotic arm, while the achieved goal is the position of the extremity
of the robotic arm. This assumption could be generalized to 𝜙 a submersion (a differentiable
function such that its d𝜙𝑠 is surjective for every 𝑠), but we used the linear assumption for the
simplicity of the proof.

13.3.2 The Value Measure Under the Continuous Density Assumption

Under this assumption, we can show that 𝜈𝜋 and 𝑀𝜋 introduced Section 13.2.2 can be
decomposed in a Dirac part and a second part which is continuous with respect to Lebesgue
measure:
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Lemma 13.4. Under Assumption 13.1, there is a function 𝑞𝜋(𝑠|𝑠0, 𝑔) such that for any (𝑠0, 𝑔):

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0(d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠) (13.3.1)

and 𝑞𝜋(𝑠|𝑠0, 𝑔) is a continuous function of 𝑠, 𝑠0, 𝑔.
There is a function �̃�𝜋(𝑠, 𝑔, 𝑔′) such that for any 𝑠, 𝑔:

𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠) + �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′). (13.3.2)

and �̃�𝜋(𝑠, 𝑔, 𝑔′) is a continuous function of (𝑠, 𝑔, 𝑔′).
The function �̃�𝜋 satisfies for every (𝑠, 𝑔, 𝑔′) ∈ 𝐾𝒮 × 𝒢 × 𝒢 the fixed point equation:

�̃�(𝑠, 𝑔, 𝑔′) = 𝛾

∫︁
𝑎

𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)
(︂
𝑝(𝑔′|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔′)

)︂
(13.3.3)

The proof of the Lemma is in Section 13.3.4.
We can now rigorously define the value measure 𝑉 𝜋(𝑠,d𝑔) as follows.

Theorem 13.5. Under Assumption 13.1, we can define the value-measure 𝑉 𝜋(𝑠,d𝑔) as the
measure on 𝒢 × 𝒢:

𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + �̃�(𝑠, 𝑔, 𝑔)𝜆(d𝑔) (13.3.4)

The value measure 𝑉 𝜋 satisfies the fixed point equation:

𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑔) [𝑉
𝜋(𝑠′,d𝑔)] (13.3.5)

Finally, the value-measure is consistent with the value function 𝑉 𝜀(𝑠, 𝑔) when 𝜀 → 0.
Formally, the measure on 𝐾𝒮 × 𝒢: 𝜆(d𝑠) 1

𝜆(𝜀)𝑉
𝜋
𝜀 (𝑠, 𝑔)𝜆(d𝑔) converges weakly to 𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔)

when 𝜀→ 0.

The proof of the Theorem is in Section 13.3.4.
Even though we now have defined the multi-goal value measure together with its Bellman

equation, learning directly 𝑉 𝜋(𝑠,d𝑔) without bias poses technical issues. This is discussed in
Section 16.1.2.

13.3.3 Equivalence Between 𝜀 → 0 and the Dirac Setting under the
continuous assumption

We now show the equivalence between environments with infinitely sparse rewards and with
sparse rewards 𝑅𝜀 when 𝜀→ 0. As replacing sparse rewards with infinitely sparse rewards is
similar to reward shaping (Ng et al., 1999), ensuring that this changing this setting does not
change the optimal policies in the environment. All the proofs are in Section 13.3.4.

Definition 13.6. We say that 𝜋2 is better than 𝜋1 with infinitely sparse rewards if the
two measures 𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) and 𝜆(d𝑠)𝑉 𝜋2(𝑠,d𝑔) on 𝐾𝒮 × 𝒢 satisfy: 𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) ⩽
𝜆(d𝑠)𝑉 𝜋2(𝑠, .).

We say that 𝜋2 is asymptotically better than 𝜋1 when 𝜀→ 0 if for all 𝑠, 𝑔,

lim inf
𝜀→0

𝑉 𝜋2
𝜀 (𝑠, 𝑔)

𝑉 𝜋1
𝜀 (𝑠, 𝑔)

⩾ 1.

Theorem 13.7. We assume Assumption 13.1 and take 𝜋1, 𝜋2 ∈ Π.
Then, 𝜋2 is better than 𝜋1 with infinitely sparse rewards if and only if 𝜋2 is asymptotically

better than 𝜋1 when 𝜀→ 0. In particular, a policy 𝜋* is an optimal policy with infinitely sparse
rewards if and only if it is an optimal policy when 𝜀→ 0.

In the following statement, we introduce 3 definitions of expected return: the return 𝐽(𝜋)
with infinitely sparse reward, the return 𝐽𝜀(𝜋) with sparse reward 𝑅𝜀, and the estimated return
𝐽𝑛(𝜋) with the value measure approximator 𝑣𝑛. Then, we show that these three definitions are
consistent.
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Theorem 13.8. We define 𝐽(𝜋), the expected return with infinitely sparse rewards for the goal
density 𝑝𝒢, as:

𝐽(𝜋) :=

∫︁
𝑠0,𝑔

𝜆(d𝑠0)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝑉 𝜋(𝑠0,d𝑔). (13.3.6)

We consider the expected return for the reward 𝑅𝜀 and the goal distribution 𝜌(d𝑔).

𝐽𝜀(𝜋) = E𝑔∼𝜌(d𝑔),𝑠0,𝑎0,...

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅𝜀(𝑠𝑡, 𝑔)

⎤⎦ =

∫︁
𝑔,𝑠0

𝑝𝒢(𝑔)𝜆(d𝑠0,d𝑔)𝑝0(𝑠0|𝑠)𝑉𝜀(𝑠0, 𝑔) (13.3.7)

Let (𝑣𝑛(𝑠, 𝑔))𝑛⩾0 be any sequence of densities on 𝒮 × 𝒢 such that the measure on 𝒮 × 𝒢:
𝜆(d𝑠)𝑣𝑛(𝑠, 𝑔)𝜌𝒢(d𝑔) converges weakly to 𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔). We define 𝜌(d𝑔) := 1

𝑐𝑝
2
𝒢(𝑔)𝜆(d𝑔) with

𝑐 :=
∫︀
𝑔
𝑝2𝒢(𝑔)𝜆(d𝑔), and 𝐽𝑛(𝜋) the estimator of the average return for the goal distribution 𝜌

with estimator 𝑣𝑛:

𝐽𝑛(𝜋) := E𝑔∼𝜌(d𝑔),𝑠0∼𝑝(𝑠0|𝑔) [𝑣𝑛(𝑠0, 𝑔)] (13.3.8)

Then the two estimators 𝐽𝑛 and 𝐽𝜀 converge to 𝐽 :

1

𝜆(𝜀)
𝐽𝜀(𝜋)→𝜀→0 𝐽(𝜋) (13.3.9)

𝑐𝐽𝑛(𝜋)→𝑛→∞ 𝐽(𝜋) (13.3.10)

Finally, we show that the return 𝐽(𝜋) allow to rank policies according to ≺, and is a relevant
objectif to optimize with an actor-critic method as in Chapter 16.

Proposition 13.9. We assume Assumption 13.1. Moreover, we assume that 𝑝𝒢(𝑔) > 0 for
every 𝑔 ∈ 𝜙(𝐾𝒮), and 𝑝0(𝑠0|𝑔) > 0 for every (𝑠0, 𝑔) ∈ 𝐾𝒮 × 𝒢.

We consider the partial order ≺ defined as: 𝜋1 ≺ 𝜋2 if 𝜋2 is strictly better than 𝜋1 with
infinitely sparse rewards: 𝜆(d𝑠)𝑉 𝜋1(𝑠,d𝑔) ≺ 𝜆(d𝑠)𝑉 𝜋2(𝑠,d𝑔) on 𝐾𝒮 × 𝒢.

Then 𝜋 ↦→ 𝐽(𝜋) is strictly increasing for ≺.

13.3.4 Proofs of Lemma 13.4 and Theorems 13.5, 13.7, 13.8, 13.9
Proof of Lemma 13.4

Proof. We have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)
∑︁
𝑘⩾0

𝛾𝑘(𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) (13.3.11)

We know that
(𝑃𝜋)(d𝑠′|𝑠, 𝑔) = 𝜆(d𝑠′)

∫︁
𝑎
𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎),

and by induction, for 𝑘 ⩾ 1,

(𝑃𝜋)𝑘(d𝑠|𝑠0, 𝑔) = 𝜆(d𝑠)

∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)
(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)
)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1).

We define:

𝑞𝜋(𝑠|𝑔, 𝑠0) := (1− 𝛾)
∑︁
𝑘⩾1

𝛾𝑘
∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)
(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)
)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

(13.3.12)
We now check that 𝑞𝜋 is well-defined and continuous. For every 𝑘 ⩾ 1, the function

(𝑔, 𝑠0, 𝑎0, ..., 𝑠𝑘−1, 𝑎𝑘−1, 𝑠) ↦→ 𝜋(𝑎0|𝑠0, 𝑔)
(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)
)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

is continuous and the supports of 𝜋 are 𝑝 compact sets. Therefore, for every 𝑘 ⩾ 0, the function

(𝑔, 𝑠0, 𝑠) ↦→
∫︁
𝑎0,𝑠1,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)
(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)
)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)
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is well defined and continuous.
Moreover, for every 𝑘 ⩾ 0, and (𝑠, 𝑔):⃒⃒⃒⃒

⃒𝛾𝑘
∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)
(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)
)︃
𝑝(𝑠|𝑠𝑘−1, 𝑎𝑘−1)

⃒⃒⃒⃒
⃒ ⩽ (13.3.13)

⩽ 𝛾𝑘
∫︁
𝑎0,...,𝑠𝑘−1,𝑎𝑘−1

𝜋(𝑎0|𝑠0, 𝑔)
(︃
𝑘−1∏︁
𝑖=1

𝑝(𝑠𝑖|𝑠𝑖−1, 𝑎𝑖−1)𝜋(𝑎𝑖|𝑠𝑖, 𝑔)
)︃
‖𝑝‖∞ (13.3.14)

= 𝛾𝑘‖𝑝‖∞ (13.3.15)

and
∑︀
𝑘⩾0 𝛾

𝑘‖𝑝‖∞ ⩽∞. Therefore, 𝑞𝜋(𝑠|𝑔, 𝑠0) is a continuous function and we have:

𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0 (d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠). (13.3.16)

Moreover, the support of 𝜈𝜋 is compact and for every 𝑠0 ∈ 𝐾𝒮 , we have supp (𝜈𝜋(.|𝑠0, 𝑔)) ⊂ 𝐾𝒮 .
We now show the existence of �̃�𝜋 . We have:

𝑀𝜋(𝑠, 𝑔, d𝑔′) =
1

1− 𝛾
(︀
𝜙*𝜈

𝜋(d𝑠′|𝑠, 𝑔)
)︀
(d𝑔′) = 𝜙*

(︀
(𝛿𝑠(d𝑠

′)
)︀
(d𝑔′) +

1

1− 𝛾
𝜙*
(︀
𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)

)︀
(d𝑔′)

First, 𝜙*(𝛿𝑠) = 𝛿𝜙(𝑠). Then, we study the second part 𝜙* (𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)) (d𝑔′), and show that there is a
continuous function �̃�(𝑠, 𝑔, 𝑔′) such that

1

1− 𝛾
𝜙*
(︀
𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)

)︀
(d𝑔′) = �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) (13.3.17)

Let 𝑓(𝑔) be a continuous test function. We have:∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜙*
(︀
𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠)

)︀
(d𝑔′) =

∫︁
𝑠′
𝑓(𝜙(𝑠′))𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′) (13.3.18)

We use the change of variable 𝑠′ = 𝑒 + 𝑘 with 𝑘 ∈ Ker𝜙 and 𝑒 ∈ Ker𝜙⊥ and use that 𝜙(𝑠′) = 𝜙(𝑒),
and 𝜙Ker𝜙⊥ the restriction of 𝜙 to Ker𝜙⊥ is invertible. In order to use continuity theorems on integrals,
we want to restrict the integral domains to compact sets. We define the orthogonal projections of 𝐾𝒮
on Ker𝜙 and Ker𝜙⊥: 𝐾 = projKer𝜙(K𝒮) and 𝐸 = projKer𝜙⊥ (K𝒮). 𝐾 and 𝐸 are compact sets and
supp (𝑞𝜋(𝑠′|𝑠, 𝑔)) ⊂ {𝑒+ 𝑘 , (𝑘, 𝑒) ∈ 𝐾 × 𝐸} for every 𝑠 ∈ 𝐾𝒮 . We have:∫︁

𝑔′∈𝒢
𝑓(𝑔′)𝜙*

(︀
𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)

)︀
(d𝑔′) =

∫︁
𝑒∈Ker𝜙⊥,𝑘∈Ker𝜙

𝑓(𝜙(𝑒+ 𝑘))𝑞𝜋(𝑒+ 𝑘|𝑠, 𝑔)𝜆(d𝑒, d𝑘) (13.3.19)

=

∫︁
𝑒∈𝐸,𝑘∈𝐾

𝑓(𝜙(𝑒+ 𝑘))𝑞𝜋(𝑒+ 𝑘|𝑠, 𝑔)𝜆(d𝑒, d𝑘) (13.3.20)

=

∫︁
𝑒∈𝐸

𝑓(𝜙(𝑒))𝜆(d𝑒)

∫︁
𝑘∈𝐾

𝑞𝜋(𝑒+ 𝑘|𝑠, 𝑔)𝜆(d𝑘) (13.3.21)

where we can switch integrals because the sets are compact and the functions continuous. We use the change
of variable: 𝑔′ = (𝜙|Ker𝜙⊥ )−1(𝑒). For simplicity, we use the notation 𝜙−1 = (𝜙|Ker𝜙⊥ )−1.∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜙*
(︀
𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)

)︀
(d𝑔′) =

∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜆(d𝑔′)

(︂
det(𝜙−1)

∫︁
𝑘∈𝐾

1𝐸(𝜙
−1(𝑔′)𝑞𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔)𝜆(d𝑘)

)︂
(13.3.22)

=

∫︁
𝑔′∈𝒢

𝑓(𝑔′)𝜆(d𝑔′)

(︂
det(𝜙−1)

∫︁
𝑘∈𝐾

𝑞𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔)𝜆(d𝑘)
)︂

(13.3.23)

where the last line is obtained by using that 1𝐸(𝑠′)𝑞𝜋(𝑠′|., .) = 𝑞𝜋(𝑠′|., .) because 𝑠′ /∈ 𝐸 ⇒ 𝑞𝜋(𝑠′|., .) = 0. We
define �̃�𝜋(𝑠, 𝑔, 𝑔′) = 1

1−𝛾 det(𝜙)−1
∫︀
𝑘∈𝐾 𝑞𝜋(𝜙−1(𝑔′) + 𝑘|𝑠, 𝑔)𝜆(d𝑘). The function (𝑠, 𝑔, 𝑘, 𝑔′)→ 𝑞𝜋(𝜙−1(𝑔′) +

𝑘|𝑠, 𝑔) is continuous and 𝐾 is compact. Therefore, �̃�𝜋 is continuous and bounded, and:

1

1− 𝛾
𝜙*
(︀
𝑞𝜋(𝑠′|𝑠, 𝑔)𝜆(d𝑠′)

)︀
(d𝑔′) = �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)

Moreover, the support of �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) is compact and supp (�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)) ⊂ 𝜙(𝐾𝒮).
We now prove the fixed point equation on �̃�𝜋 . We consider the Bellman equation on 𝑀𝜋(𝑠, 𝑔, d𝑔′). We

have:

𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′,d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑀𝜋(𝑠′, 𝑔, d𝑔′) (13.3.24)
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By using 𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′), we have:

�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) = 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′, d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔

′) + �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)
)︀

(13.3.25)

Let 𝑓(𝑔′) be a continuous test function, we have:∫︁
𝑔′
𝑓(𝑔′)�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′) = (13.3.26)

= 𝛾

∫︁
𝑠′,𝑎,𝑔′

𝜆(d𝑠′,d𝑎)𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔

′) + �̃�(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′)
)︀

(13.3.27)

= 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′, d𝑎)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︂
𝑓(𝜙(𝑠′)) +

∫︁
𝑔′
𝜆(d𝑔′)𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�(𝑠′, 𝑔, 𝑔′)

)︂
(13.3.28)

= 𝛾

∫︁
𝑎,𝑔′

𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑔′|𝑠, 𝑎) + 𝛾

∫︁
𝑎,𝑠′,𝑔′

𝜆(d𝑎,d𝑠′, d𝑔′)𝑓(𝑔′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�(𝑠′, 𝑔, 𝑔′)𝑓(𝑔′)

(13.3.29)

where 𝑝(𝑔|𝑠, 𝑎) is the density with respect to Lebesgue measure 𝜆(d𝑔) of 𝜙*𝑃 (d𝑠′|𝑠, 𝑎). Formally, the
existence proof of 𝑝 is the same than for �̃� in equation (13.3.17), and is using the fact that 𝑃 is continuous
with respect to 𝜆(d𝑠) and 𝜙 is a surjective linear operator. Therefore, we have, for 𝜆-almost 𝑠, 𝑔, 𝑔′:

�̃�(𝑠, 𝑔, 𝑔′) = 𝛾

∫︁
𝑎
𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔′|𝑠, 𝑎) + 𝛾

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔′)

)︂
(13.3.30)

Because �̃�𝜋 is continuous, this relation is true for every 𝑠, 𝑔, 𝑔′, in particular if 𝑔 = 𝑔′.

Proof of Theorem 13.5
Proof. Let 𝑓(𝑔) be a continuous test function. We have:∫︁

𝑔
𝑉 𝜋(𝑠, d𝑔)𝑓(𝑔) = 𝑓(𝜙(𝑠)) +

∫︁
𝑔
�̃�𝜋(𝑠, 𝑔, 𝑔)𝑓(𝑔)𝜆(d𝑔) (13.3.31)

Moreover, we know from Lemma 13.4 that

�̃�𝜋(𝑠, 𝑔, 𝑔) = 𝛾

∫︁
𝑎
𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

)︂
(13.3.32)

Therefore:∫︁
𝑔
𝑉 𝜋(𝑠, d𝑔)𝑓(𝑔) = 𝑓(𝜙(𝑠)) + 𝛾

∫︁
𝑔,𝑎

𝜆(d𝑎, d𝑔)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)
(︂
𝑝(𝑔|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

)︂
(13.3.33)

On the other side, we have:∫︁
𝑔
𝑓(𝑔)E𝑎∼𝜋(.|𝑠,𝑔),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎)

[︀
𝑉 𝜋(𝑠′,d𝑔)

]︀
= (13.3.34)

=

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔) + �̃�𝜋(𝑠′, 𝑔, 𝑔)𝜆(d𝑔)

)︀
(13.3.35)

=

∫︁
𝑎,𝑠′

𝜆(d𝑎, d𝑠′)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑓(𝜙(𝑠′)) +
∫︁
𝑎,𝑠′,𝑔

𝜆(d𝑎,d𝑠′, d𝑔)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

(13.3.36)

For the first part, we use the change of variable 𝑔 = 𝜙(𝑠′), and we have:∫︁
𝑔
𝑓(𝑔)E𝑎∼𝜋(.|𝑠,𝑔),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎)

[︀
𝑉 𝜋(𝑠′, d𝑔)

]︀
= (13.3.37)

=

∫︁
𝑎,𝑔

𝜆(d𝑎,d𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎)𝑓(𝑔) +
∫︁
𝑎,𝑠′,𝑔

𝜆(d𝑎, d𝑠′,d𝑔)𝑓(𝑔)𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)�̃�𝜋(𝑠′, 𝑔, 𝑔)

(13.3.38)

where 𝑝(.|𝑠, 𝑎) is the density of 𝜙*𝑃 (.|𝑠, 𝑎) (where 𝜙* is the push-forward operator) with respect to Lebesgue
measure. Therefore, we have:∫︁

𝑔
𝑉 (𝑠,d𝑔)𝑓(𝑔) =

∫︁
𝑔
𝑓(𝑔)

(︀
𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃𝜋(d𝑠′|𝑠,𝑔)

[︀
𝑉 𝜋(𝑠′, d𝑔)

]︀)︀
(13.3.39)

and we can conclude:

𝑉 𝜋(𝑠,d𝑔)𝑓(𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃𝜋(d𝑠′|𝑠,𝑔)
[︀
𝑉 𝜋(𝑠′,d𝑔)

]︀
(13.3.40)
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We now show that know that the measure on 𝐾𝒮 × 𝒢: 𝜆(d𝑠) 1
𝜆(𝜀)

𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑔) converges weakly to
𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔) when 𝜀→ 0. We know that:

𝑉 𝜋𝜀 (𝑠, 𝑔) = E

⎡⎣∑︁
𝑘⩾0

𝛾𝑘𝑅𝜀(𝑠𝑘, 𝑔)|𝑠0 = 𝑠

⎤⎦ (13.3.41)

=
1

1− 𝛾

∫︁
𝑠′∈𝒮

𝜈𝜋(d𝑠′|𝑠, 𝑔)𝑅𝜀(𝑠′, 𝑔) (13.3.42)

=

∫︁
𝑠′∈𝒮

𝜈𝜋(d𝑠′|𝑠, 𝑔)1‖𝜙(𝑠′)−𝑔‖⩽𝜀 (13.3.43)

We use the change of variable 𝑔′ = 𝜙(𝑠′), and we have (with 𝜙* the push-forward operator):

𝑉 𝜋𝜀 (𝑠, 𝑔) =

∫︁
𝑔′∈𝒮

(𝜙*𝜈
𝜋)(d𝑔′|𝑠, 𝑔)1‖𝑔′−𝑔‖⩽𝜀 (13.3.44)

=

∫︁
𝑔′∈𝒮

𝑀𝜋(𝑠, 𝑔, d𝑔′)1‖𝑔′−𝑔‖⩽𝜀 (13.3.45)

=𝑀𝜋(𝑠, 𝑔, 𝐵(𝑔, 𝜀)) (13.3.46)

Let 𝐹 := {𝑔 ∈ 𝒢, inf𝑠∈𝐾𝒮 ‖𝑔−𝜙(𝑠)‖ < 1}. Therefore, for every 𝜀 < 1, the support of 𝜆(d𝑠) 1
𝜆(𝜀)

𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑔)

is compact and is a subset of 𝐹 . Let 𝑓(𝑠, 𝑔) be a continuous bounded test function and 0 < 𝜀 < 1. We have:∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑠,d𝑔) =

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑀𝜋(𝑠, 𝑔, 𝐵(𝑔, 𝜀))𝜆(d𝑠, d𝑔) (13.3.47)

We know that 𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + �̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑔′). Therefore, 𝑀𝜋(𝑠, 𝑔, 𝐵(𝑔, 𝜀)) = 1‖𝑔−𝜙(𝑠)‖⩽𝜀 +∫︀

𝑔′
1‖𝑔−𝑔′‖⩽𝜀

𝜆(𝜀)
�̃�𝜋(𝑠, 𝑔, 𝑔′), and we have:∫︁

𝑠∈𝐾𝒮 ,𝑔∈𝒢
𝑓(𝑠, 𝑔)

1

𝜆(𝜀)
𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑠, d𝑔) = (13.3.48)

=

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹

1‖𝑔−𝜙(𝑠)‖⩽𝜀

𝜆(𝜀)
𝑓(𝑠, 𝑔)𝜆(d𝑠, d𝑔) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹,𝑔′∈𝒢

𝑓(𝑠, 𝑔)
1‖𝑔−𝑔′‖⩽𝜀

𝜆(𝜀)
�̃�𝜋(𝑠, 𝑔, 𝑔′)𝜆(d𝑠, d𝑔,d𝑔′)

(13.3.49)

=

∫︁
𝑢

(︃∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠,d𝑔)

)︃
𝑈𝜀(d𝑢)

(13.3.50)

where 𝑈𝜀(d𝑢) is the uniform measure on 𝐵(0, 𝜀) the ball of size 𝜀 around 0: 𝑈𝜀(d𝑢) :=
1‖𝑢‖⩽𝜀
𝜆(𝜀)

𝜆(d𝑢). We
can switch the order of integration because 𝑓 , �̃�𝜋 are continuous, bounded, and the integral is computed
on compact sets. The function 𝑢→

∫︀
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +
∫︀
𝑠∈𝐾𝒮 ,𝑔∈𝐹

𝑓(𝑠, 𝑔)�̃�(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠, d𝑔) is
bounded and continuous. Since 𝑈𝜀(d𝑢) converges weakly to 𝛿0(d𝑢), we have:

lim
𝜀→0

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)
1

𝜆(𝜀)
𝑉 𝜋𝜀 (𝑠, 𝑔)𝜆(d𝑠, d𝑔) = (13.3.51)

= lim
𝜀→0

∫︁
𝑢

(︃∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝐹

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠,d𝑔)

)︃
𝑈𝜀(d𝑢) (13.3.52)

=

∫︁
𝑢

(︃∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠) + 𝑢) +

∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔 + 𝑢)𝜆(d𝑠 d𝑔)

)︃
𝛿0(d𝑢) (13.3.53)

=

∫︁
𝑠∈𝐾𝒮

𝜆(d𝑠)𝑓(𝑠, 𝜙(𝑠)) +

∫︁
𝑠∈𝐾𝒮 ,𝑔

𝑓(𝑠, 𝑔)�̃�𝜋(𝑠, 𝑔, 𝑔)𝜆(d𝑠, d𝑔) (13.3.54)

=

∫︁
𝑠∈𝐾𝒮 ,𝑔

𝑓(𝑠, 𝑔)𝑉 𝜋(𝑠, d𝑔)𝜆(d𝑠) (13.3.55)

This concludes the proof.

Proof of Theorem 13.7
Proof.

We know that 𝑉 𝜋(𝑠, d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + �̃�(𝑠, 𝑔, 𝑔)𝜋𝜆(d𝑔). Moreover:

𝑉 𝜋𝜀 (𝑠0, 𝑔) =𝑀(𝑠0, 𝑔, 𝐵(𝑔, 𝜀)) (13.3.56)
= 1𝜙(𝑠0)=𝑔 + 𝜆(𝜀)�̃�𝜋(𝑠0, 𝑔, 𝑔) + 𝑜(𝜆(𝜀)) (13.3.57)
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Therefore, for any policies 𝜋1, 𝜋2 ∈ Π:

𝑉 𝜋2
𝜀 (𝑠, 𝑔)

𝑉 𝜋1
𝜀 (𝑠, 𝑔)

=
1𝜙(𝑠)=𝑔 + �̃�𝜋2 (𝑠, 𝑔, 𝑔)𝜆(𝜀) + 𝑜(𝜆(𝜀))

1𝜙(𝑠)=𝑔 + �̃�𝜋1 (𝑠, 𝑔, 𝑔)𝜆(𝜀) + 𝑜(𝜆(𝜀))
(13.3.58)

= 1𝜙(𝑠)=𝑔 + 1𝜙(𝑠)̸=𝑔
�̃�𝜋2 (𝑠, 𝑔, 𝑔)

�̃�𝜋1 (𝑠, 𝑔, 𝑔)
+ 𝑜𝜀→0(1) (13.3.59)

Therefore, by definition, 𝜋2 is asymptotically better than 𝜋1 when 𝜀→ 0 if and only if, for all (𝑠, 𝑔) ∈ 𝒮 × 𝒢:

1𝜙(𝑠)=𝑔 + 1𝜙(𝑠)̸=𝑔
�̃�𝜋2 (𝑠, 𝑔, 𝑔)

�̃�𝜋1 (𝑠, 𝑔, 𝑔)
⩾ 1 (13.3.60)

If 𝜙(𝑠) ̸= 𝑔, this inequality is equivalent to �̃�𝜋2 (𝑠, 𝑔, 𝑔) ⩾ 𝑚𝜋1 (𝑠, 𝑔, 𝑔). Because �̃�𝜋1 and �̃�𝜋2 are continuous,
�̃�𝜋2(𝑠, 𝑔, 𝑔) ⩾ 𝑚𝜋1(𝑠, 𝑔, 𝑔) for all 𝜙(𝑠) ̸= 𝑔 is equivalent to �̃�𝜋2(𝑠, 𝑔, 𝑔) ⩾ 𝑚𝜋1(𝑠, 𝑔, 𝑔) for every (𝑠, 𝑔).
Therefore, 𝜋2 is asymptotically better than 𝜋1 when 𝜀 → 0 if and only if, for all (𝑠, 𝑔), 𝑚𝜋2(𝑠, 𝑔, 𝑔) ⩾
𝑚𝜋1 (𝑠, 𝑔, 𝑔).

On the other side 𝜋2 is better than 𝜋1 with infinitely sparse rewards if and only if:

𝜆(d𝑠)𝑉 𝜋1 (𝑠,d𝑔) ⪯ 𝜆(d𝑠)𝑉 𝜋2 (𝑠, d𝑔) (13.3.61)
⇔ 𝜆(d𝑠)𝛿𝜙(𝑠)(d𝑔) +𝑚𝜋1 (𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) ⪯ 𝜆(d𝑠)𝛿𝜙(𝑠)(d𝑔) +𝑚𝜋2 (𝑠, 𝑔, 𝑔)𝜆(d𝑠, d𝑔) (13.3.62)

⇔ 𝑚𝜋1 (𝑠, 𝑔, 𝑔)𝜆(d𝑠,d𝑔) ⩽ 𝑚𝜋2 (𝑠, 𝑔, 𝑔)𝜆(d𝑠, d𝑔) (13.3.63)

Therefore, for 𝜆-almost every (𝑠, 𝑔), 𝑚𝜋1 (𝑠, 𝑔, 𝑔) ⩽ 𝑚𝜋2 (𝑠, 𝑔, 𝑔). Therefore: 𝜋2 is better than 𝜋1 with infinitely
sparse rewards if and only if �̃�𝜋2 (𝑠, 𝑔, 𝑔) ⩾ 𝑚𝜋1 (𝑠, 𝑔, 𝑔) for 𝜆-almost every 𝑠, 𝑔. This concludes the proof.

Proof of Theorem 13.8
Proof. We have:

𝐽𝜀(𝜋) =

∫︁
𝑠0,𝑔

𝑉𝜀(𝑠0, 𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0, d𝑔) (13.3.64)

𝐽𝑛(𝜋) =

∫︁
𝑠0,𝑔

𝑣𝑛(𝑠0, 𝑔)
1

𝑐
𝑝2𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0, d𝑔) (13.3.65)

and whe know from Theorem 13.5 that 𝑉𝜀(𝑠,𝑔)
𝜆(𝜀)

𝜆(d𝑠, d𝑔) and 𝑣𝑛(𝑠, 𝑔)𝑝𝒢(d𝑔)𝜆(d𝑠, d𝑔) converge weakly to
𝜆(d𝑠)𝑉 𝜋(𝑠,d𝑔) on 𝐾𝒮 × 𝒢 when 𝜀→ 0 and 𝑛→∞. Therefore, because 𝑝0 and 𝑝𝒢 are continuous bounded
functions,

lim
𝜀→0

1

𝜆(𝜀)
𝐽𝜀(𝜋) =

∫︁
𝑠0,𝑔

𝑉 𝜋(𝑠0, d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0) = 𝐽(𝜋) (13.3.66)

Similarly:

lim
𝑛→∞

𝐽𝑛(𝜋) =

∫︁
𝑠0,𝑔

𝑉 𝜋(𝑠, d𝑔)
1

𝑐
𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0) (13.3.67)

=
1

𝑐
𝐽(𝜋) (13.3.68)

Proof of Proposition 13.9
Proof. The function 𝐽(𝜋) is clearly non-decreasing, and we have to check that we cannot have 𝜋1 ≺ 𝜋2
with 𝐽(𝜋1) = 𝐽(𝜋2). Let 𝜋1, 𝜋2 ∈ Π such that 𝜋1 ≺ 𝜋2. Therefore, there is 𝑈 ⊂ 𝐾𝒮 × 𝒢 such that
(𝜆⊗ 𝑉 𝜋2(., .))(𝑈) > (𝜆⊗ 𝑉 𝜋1(., .))(𝑈). Moreover, because supp (𝜆(d𝑠)𝑉 𝜋(𝑠, d𝑔)) ⊂ 𝐾𝒮 × 𝜙(𝐾𝒮), therefore
we can suppose 𝑈 ⊂ 𝐾𝒮 × 𝜙(𝐾𝒮), and we have:∫︁

(𝑠,𝑔)∈𝑈
𝜆(d𝑠, d𝑔)(�̃�𝜋2 (𝑠, 𝑔, 𝑔)− �̃�𝜋1 (𝑠, 𝑔, 𝑔)) > 0 (13.3.69)

We already know that �̃�𝜋2(𝑠, 𝑔, 𝑔)− �̃�𝜋1(𝑠, 𝑔, 𝑔) ⩾ 0 for almost every 𝑠, 𝑔 (see proof of Theorem 13.7).
Therefore, there is 𝜀′ > 0 and 𝑉 ⊂ 𝑈 with d𝜆(𝑉 ) > 0 such that for every 𝑠, 𝑔 ∈ 𝑉 , �̃�𝜋2 (𝑠, 𝑔, 𝑔)−�̃�𝜋1 (𝑠, 𝑔, 𝑔) >
𝜀′.
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We have:

𝐽(𝜋2)− 𝐽(𝜋1) =
∫︁
𝑠∈𝐾𝒮 ,𝑔∈𝒢

𝑝0(𝑠|𝑔)𝑝𝒢(𝑔)(𝑉 𝜋2 (𝑠, d𝑔)− 𝑉 𝜋1 (𝑠,d𝑔) (13.3.70)

⩾
∫︁
(𝑠,𝑔)∈𝑉

𝑝0(𝑠|𝑔)𝑝𝒢(𝑔) (�̃�𝜋2 (𝑠, 𝑔, 𝑔)− �̃�𝜋1 (𝑠, 𝑔, 𝑔)) (13.3.71)

⩾ 𝜀′
∫︁
(𝑠,𝑔)∈𝑉

𝑝0(𝑠|𝑔)𝑝𝒢(𝑔) (13.3.72)

> 0 (13.3.73)

because 𝑝𝒢(𝑔) > 0 for 𝜆-almost every 𝑔 in 𝜙(𝐾𝒮), and 𝑝0(𝑠|𝑔) > 0 for 𝜆-almost every 𝑠, 𝑔 in 𝐾𝒮 × 𝒢. This
concludes the proof.





Chapter 14

A study of Hindsight Experience
Replay’s bias

Hindsight Experience Replay (HER) is known to be biased in a general setting (Manela and Biess,
2021; Lanka and Wu, 2018; Plappert et al., 2018), and this bias corresponds to a well-known
psychological bias (Fischhoff, 1975). In this chapter, we study HER’s bias. In Section 14.2 we
formally prove that HER is biased. While it is a known fact, there were no formal proof of
it to our knowledge. In Section 14.1, we show that HER is actually unbiased in deterministic
environments. This result vindicates HER for deterministic environments: HER leverages the
structure of multi-goal environments, is not vanishing when the rewards are sparse, and is
mathematically well-grounded.

14.1 HER is unbiased in deterministic environments.

Despite its bias, HER is efficient in practice, especially in continuous control environments. We
vindicate HER theoretically by showing that HER is unbiased in deterministic environments.
We say that an environment is deterministic is the next state 𝑠𝑡+1 is uniquely determined by
the current state 𝑠𝑡 and an action 𝑎𝑡. This covers many usual environments such as robotic
environments.

In order to define HER, we assume access to samples of trajectories (𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...) ∼
𝜌(𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...) with 𝑔 ∼ 𝜌𝒢(d𝑔), 𝑠0 ∼ 𝜌0(d𝑠0|𝑔), and for every 𝑘 ⩾ 0, 𝑎𝑘 ∼ 𝜋expl(𝑎|𝑠𝑘, 𝑔)
where 𝜋expl is an exploration policy, 𝑠𝑘+1 ∼ 𝑃 (d𝑠|𝑠𝑘, 𝑎𝑘). For simplicity, we will assume the
trajectories are infinite.

Here we consider HER with the future strategy described in the original paper: goals
are re-sampled from a trajectory as goal reached later in the trajectory. We formalize HER
as follows: we sample a trajectory 𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...) ∼ 𝜌(𝑔, 𝑠0, 𝑎0, 𝑠1, 𝑎1, ...), a Bernoulli
variable 𝑈 ∼ ℬ(𝛼), and two independent integer random variables 𝐾,𝐿, from distributions
𝑝𝐾 and 𝑝𝐿, such that for every 𝑘, 𝑙, 𝑝𝐾(𝑘) > 0 and 𝑝𝐿(𝑙) > 0. The bernoulli variable 𝑈
represents the random choice of using the standard Q-learning update, or the HER update with
a resampled goal. The random variable 𝐾 represents the timestep of the transition we will use
for the Q-learning update, and 𝐿 represents the timestep used to sample a new goal 𝑔′ for the
future sampling strategy. Then, the update 𝛿𝜃HER(𝜏, 𝑈,𝐾,𝐿) is defined as:

• If 𝑈 = 0:

𝛿𝜃HER(𝜏, 𝑈 = 0,𝐾, 𝐿) := 𝜕𝜃
1

2
(𝑄𝜃(𝑠𝐾 , 𝑎𝐾 , 𝑔)−𝑅(𝑠𝐾 , 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠𝐾+1, 𝑎

′, 𝑔))2,

which corresponds to the usual Q-learning update as defined in UVFA (Schaul et al.,
2015).
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• If 𝑈 = 1 we set 𝑔′ = 𝜙(𝑠𝐾+𝐿+1) and:

𝛿𝜃HER(𝜏, 𝑈 = 1,𝐾, 𝐿) := 𝜕𝜃
1

2
(𝑄𝜃(𝑠𝐾 , 𝑎𝐾 , 𝑔

′)−𝑅(𝑠𝐾 , 𝑔′)− 𝛾 sup
𝑎′
𝑄(𝑠𝐾 , 𝑎

′, 𝑔′))2,

which corresponds to a Q-learning update for a re-sampled goal 𝑔′ = 𝜙(𝑠𝐾+𝐿), a goal
achieved later in the trajectory.

We say that environment is a continuous deterministic environment if there is a continuous
function 𝜓 : 𝒮 × 𝒜 → 𝒮 such that for every (𝑠, 𝑎) ∈ 𝒮 × 𝒜, 𝑃 (d𝑠′|𝑠, 𝑎) = 𝛿𝜓(𝑠,𝑎)(d𝑠

′). In
particular, any discrete deterministic environment is a continuous deterministic environment for
the discrete topology. Therefore, the following theorem can be applied to discrete environments.

Theorem 14.1 (HER is unbiased in deterministic environments). We assume the environment
is a continuous deterministic environment. We also assume that for every pair of states (𝑠, 𝑠′),
𝑠′ is reachable from 𝑠, which means there is a sequence of actions (𝑎1, ..., 𝑎𝑘) such that applying
these actions from 𝑠 leads to 𝑠′. Finally, we assume that the support of the exploration policy
𝜋expl(𝑎|𝑠, 𝑔) is the entire action space 𝒜 for every 𝑠, 𝑔.

Then, there is an euclidean norm ‖.‖ such that, for every 𝜃, the HER update with the future
sampling strategy at 𝜃, 𝛿𝜃HER is an unbiased estimate of the gradient step between 𝑄𝜃 and the
target function 𝑄target := 𝑇max𝑄𝜃:

E
[︁
𝛿𝜃HER

]︁
= 𝜕𝜃

1

2
‖𝑄𝜃 −𝑄tar‖2 (14.1.1)

If the state space 𝒮 is finite, HER has a single fixed point 𝑄∞, which is equal to 𝑄*.

The euclidean norm ‖.‖ in the theorem will depend on the exploration policy 𝜋expl(𝑎|𝑠, 𝑔).
Therefore, if the exploration policy is changing during learning, the norm will will be changing
as well.

Proof. The principle of the proof is the following. We study the sampling distribution of transitions
𝜇HER(𝑠, 𝑎, 𝑠

′, 𝑔) with HER. The bias of HER comes from the fact that the sampling of goals 𝑔 with
𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) is not independent of 𝑠′ knowing (𝑠, 𝑎). On the contrary, in deterministic environments, the
distribution of 𝑔 knowing (𝑠, 𝑎) is independent of 𝑠′ because 𝑠′ is uniquely determined by (𝑠, 𝑎).

We study the sampling distribution of transitions (𝑠, 𝑎, 𝑠′, 𝑔) used in HER. Formally, we sample a transition
(𝑠, 𝑎, 𝑠′, 𝑔) by sampling 𝜏, 𝑈,𝐾,𝐿 and defining (𝑠, 𝑎, 𝑠′, 𝑔′) := Φ(𝜏, 𝑈,𝐾,𝐿) as:

• If 𝑈 = 0, Φ(𝜏, 𝑈 = 1,𝐾, 𝐿) = (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝑔)

• If 𝑈 = 1, Φ(𝜏, 𝑈 = 1,𝐾, 𝐿) = (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝐾+𝐿))

Then, HER update can be equivalently defined as: sample (𝜏, 𝑈,𝐾,𝐿) as described above, define (𝑠, 𝑎, 𝑠′, 𝑔) =
Φ(𝜏, 𝑈,𝐾,𝐿), and:

𝛿𝜃HER(𝑠, 𝑎, 𝑠′, 𝑔) := 𝜕𝜃
1

2
(𝑄𝜃(𝑠, 𝑎, 𝑠

′, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup
𝑎′

𝑄(𝑠′, 𝑎′, 𝑔))2 (14.1.2)

Therefore:
E
[︁
𝛿𝜃HER

]︁
= 𝜕𝜃E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

1

2
(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (14.1.3)

where we define 𝜇HER to be the distribution of (𝑠, 𝑎, 𝑠′, 𝑔) given by the distribution of Φ*(𝜌⊗ 𝑝𝑈 ⊗ 𝑝𝐿 ⊗ 𝑝𝐾),
where Φ* is the push-forward operator on measures. We now compute 𝜇HER. Let 𝑓 : 𝒮 ×𝒜× 𝒮 × 𝒢 → R be
a test function, we have:

E𝑠,𝑎,𝑠′,𝑔∼𝜇HER

[︀
𝑓(𝑠, 𝑎, 𝑠′, 𝑔)

]︀
= E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))] (14.1.4)

= (1− 𝛼)E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 0]

+ 𝛼E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1]
(14.1.5)
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Moreover:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 0] =
∑︁
𝐾

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌(𝑔, 𝑠0, 𝑎0, ...)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝑔) (14.1.6)

=
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌𝒢(𝑔)𝜌0(𝑠0|𝑔)(𝑃𝜋exp )𝑘(𝑠|𝑠0, 𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)𝑓(𝑠, 𝑎, 𝑠′, 𝑔) (14.1.7)

=

∫︁
𝑠,𝑎,𝑠′,𝑔

𝑓(𝑠, 𝑎, 𝑠′, 𝑔)

(︃
𝜌𝒢(𝑔)

∫︁
𝑠0

∑︁
𝑘

𝑝𝐾(𝑘)𝜌0(𝑠0|𝑔)(𝑃𝜋exp )𝑘(𝑠|𝑠0, 𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)
)︃

(14.1.8)

=

∫︁
𝑠,𝑎,𝑠′,𝑔

𝑓(𝑠, 𝑎, 𝑠′, 𝑔)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) (14.1.9)

with
𝜈(𝑠|𝑔) := 𝜌𝒢(𝑔)

∫︁
𝑠0

𝜌0(𝑠0|𝑔)
∑︁
𝑘

𝑝𝐾(𝑘)(𝑃𝜋exp )𝑘(𝑠|𝑠0, 𝑔) (14.1.10)

which is the future distribution of states 𝑠 when sampling a goal 𝑔 and following the exploration policy
𝜋expl(.|., 𝑔), with 𝑝𝐾 as the distribution of future timesteps. If 𝑝𝐾(𝑘) = (1−𝛾)𝛾𝑘, this definition of 𝜈 coincides
with the definition of 𝜈𝜋 in the following sections. This is the reason why we use the same notation, even
though 𝜈 is here slightly more general.

We now compute:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1] =
∑︁
𝑘,𝑙

𝑝𝐾(𝑘)𝑝𝐿(𝑙)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌(𝑔, 𝑠0, 𝑎0, ...)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝑘+𝑙))

(14.1.11)

If 𝑙 = 0, the re-sampled goal is 𝑔′ = 𝜙(𝑠). Else, the law of 𝑔′ knowing 𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1 is the law of 𝜙(𝑠𝑘+𝑙), which
by using the Markov property is the law of 𝜙(𝑠) if 𝑠 is sampled as (𝑃𝜋expl )𝑙−1(.|𝑠𝑘+1, 𝑔). Therefore:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1] =
∑︁
𝑘,𝑙⩾0

𝑝𝐾(𝑘)𝑝𝐿(𝑙)

∫︁
𝑔,𝑠0,𝑎0,...

𝜌(𝑔, 𝑠0, 𝑎0, ...)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝑘+𝑙))

(14.1.12)

=
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,...,𝑠𝑘+1

𝜌(𝑔, 𝑠0, ..., 𝑠𝑘+1) (𝑝𝐿(0)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠𝑘)))+

+
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,...,𝑠𝑘+1

𝜌(𝑔, 𝑠0, ..., 𝑠𝑘+1)

⎛⎝∑︁
𝑙⩾1

𝑝𝐿(𝑙)

∫︁
𝑠
(𝑃𝜋expl )𝑙−1(𝑠|𝑠𝑘+1, 𝑔)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝜙(𝑠))

⎞⎠
(14.1.13)

We define 𝜇future(d𝑔′|𝑠, 𝑠′, 𝑔) := 𝑝𝐿(0)𝛿𝜙(𝑠)(d𝑔
′) +

∑︀
𝑙⩾1 𝑝𝐿(𝑙)𝜙*(𝜋exp * 𝑃 )𝑙−1(𝑔′|𝑠′, 𝑔), where 𝜙* is the

push-forward on measures, and we have:

E𝜏,𝑈,𝐾,𝐿 [𝑓(Φ(𝜏, 𝑈,𝐾,𝐿))|𝑈 = 1] = (14.1.14)

=
∑︁
𝑘

𝑝𝐾(𝑘)

∫︁
𝑔,𝑠0,𝑎0,...,𝑠𝐾+1,𝑠

𝜌(𝑔, 𝑠0, 𝑎0, ..., 𝑠𝑘+1)𝜇future(𝑔
′|𝑠𝑘, 𝑠𝑘+1, 𝑔)𝑓(𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1, 𝑔

′)

(14.1.15)

=

∫︁
𝑠,𝑎,𝑠′,𝑔′

(︂∫︁
𝑔
𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔′|𝑠, 𝑠′, 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)𝑓(𝑠, 𝑎, 𝑠′, 𝑔′). (14.1.16)

Therefore,

𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) = (1−𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)+𝛼
(︂∫︁

𝑔
𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠, 𝑠′, 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)

(14.1.17)
We now use the deterministic hypothesis. We know that for every 𝑠, 𝑎, 𝑃 (d𝑠′|𝑠, 𝑎) = 𝛿𝜓(𝑠,𝑎)(d𝑠

′). We
have, for any 𝑠, 𝑎:

𝑃 (d𝑠′|𝑠, 𝑎)𝜇future(𝑔|𝑠, 𝑠′, 𝑔) = 𝛿𝜓(𝑠,𝑎)(d𝑠
′)𝜇future(𝑔|𝑠, 𝑠′, 𝑔) (14.1.18)

= 𝛿𝜓(𝑠,𝑎)(d𝑠
′)𝜇future(𝑔|𝑠, 𝜓(𝑠, 𝑎), 𝑔) (14.1.19)
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Therefore:

𝜇HER(𝑠, 𝑎, 𝑠′, 𝑔) = (14.1.20)

= (1− 𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) + 𝛼

(︂∫︁
𝑔
𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠, 𝜓(𝑠, 𝑎), 𝑔)

)︂
𝑃 (𝑠′|𝑠, 𝑎)

(14.1.21)

= �̃�(𝑠, 𝑎, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) (14.1.22)

where

�̃�(𝑠, 𝑎, 𝑔) := (1− 𝛼)𝜌𝒢(𝑔)𝜈(𝑠, 𝑔)𝜋expl(𝑎|𝑠, 𝑔) + 𝛼

(︂∫︁
𝑔
𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠, 𝜓(𝑠, 𝑎), 𝑔)

)︂
Therefore:

E
[︁
𝛿𝜃HER

]︁
= 𝜕𝜃

∫︁
𝑠,𝑎,𝑠′,𝑔

�̃�(𝑠, 𝑎, 𝑔)𝑃 (𝑠′|𝑠, 𝑎)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔′)− 𝛾 sup
𝑎′

𝑄(𝑠′, 𝑎′, 𝑔))2 (14.1.23)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑠′,𝑔

�̃�(𝑠, 𝑎, 𝑔)𝛿𝜓(𝑠,𝑎)(𝑠
′)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔′)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2 (14.1.24)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑠′,𝑔

�̃�(𝑠, 𝑎, 𝑔)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup
𝑎′

𝑄(𝜓(𝑠, 𝑎), 𝑎′, 𝑔))2 (14.1.25)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑔

�̃�(𝑠, 𝑎, 𝑔)(𝑄(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) sup
𝑎′

𝑄(𝑠′, 𝑎′, 𝑔))2 (14.1.26)

= 𝜕𝜃

∫︁
𝑠,𝑎,𝑔

�̃�(𝑠, 𝑎, 𝑔)(𝑄(𝑠, 𝑎, 𝑔)− 𝑇 ·𝑄(𝑠, 𝑎, 𝑔))2 (14.1.27)

We define ‖𝑄‖�̃� as:

‖𝑄‖2�̃� :=

∫︁
𝑠,𝑎,𝑔

�̃�(𝑠, 𝑎, 𝑔)𝑄(𝑠, 𝑎, 𝑔)2. (14.1.28)

We now prove that ‖.‖�̃� is a norm for the space of continuous functions on 𝒮 × 𝒜 × 𝒢. This is
equivalent to showing that the support of the probability measure �̃�, supp(�̃�) is equal to 𝒮 ×𝒜× 𝒢. Because
�̃�(𝑠, 𝑎, 𝑔) ⩾ (1 − 𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔), we know that supp(𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)) ⊂ supp(�̃�). Since
for every 𝑠, 𝑔, supp(𝜋expl(𝑎|𝑠, 𝑔)) = 𝒜, supp(𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)) = supp(𝜌𝒢(𝑔)𝜈(𝑠|𝑔)) × 𝒜. Moreover,
supp 𝜌𝒢 = 𝒢. Therefore, we only need to prove that for every 𝑔, supp(𝜈(.|𝑔)) = 𝒮.

Let 𝑔 ∈ 𝒢. Because of the definition of 𝜈 and because 𝑝𝐾(𝑘) > 0 for every 𝑘, we have supp(𝜈(𝑠|𝑔)) =⋃︀
𝑘⩾0,𝑠0∈𝒮 supp

(︀
(𝑃𝜋expl )𝑘(𝑠|𝑠0, 𝑔)

)︀
.

We define the function Ψ : 𝒮 ×
(︀
∪𝑘⩾1𝒜𝑘

)︀
→ 𝒮, corresponding to the action of sequences of action

, as follows: for every 𝑎, Ψ(𝑠, 𝑎) = 𝜓(𝑠, 𝑎), and for every 𝑘, (𝑎1, ..., 𝑎𝑘) ∈ 𝒜𝑘, Ψ(𝑠, (𝑎1, ..., 𝑎𝑘+1)) :=
𝜓(Ψ(𝑠, (𝑎1, ..., 𝑎𝑘)), 𝑎𝑘+1). Ψ is continuous. Moreover, we assumed that for any pair of states (𝑠, 𝑠′), there is
𝑘 ⩾ 0 and a sequence of actions (𝑎0, ..., 𝑎𝑘) such that applying this sequence of actions from 𝑠 leads to 𝑠′.
This means that for every 𝑠, Ψ(𝑠, .) is a surjective continuous function.

Moreover, with

supp(𝑃𝜋expl )𝑘+1(𝑠|𝑠0, 𝑔) = ∪𝑠∈supp(𝑃
𝜋expl )𝑘(𝑠|𝑠0,𝑔) supp

(︀
𝜓(𝑠, ·)*𝜋expl(.|𝑠, 𝑔)

)︀
(14.1.29)

⊇ ∪𝑠∈supp(𝑃
𝜋expl )𝑘(𝑠|𝑠0,𝑔)

(︀
𝜓(𝑠, supp(𝜋expl(.|𝑠, 𝑔)))

)︀
(14.1.30)

by using the continuity of 𝜓(𝑠, .). Then:

supp(𝑃𝜋expl )𝑘+1(𝑠|𝑠0, 𝑔) ⊇ ∪𝑠∈supp(𝑃
𝜋expl )𝑘(𝑠|𝑠0,𝑔) (𝜓(𝑠,𝒜)) (14.1.31)

= 𝜓(supp(𝑃𝜋expl )𝑘(𝑠|𝑠0, 𝑔)×𝒜) (14.1.32)

By induction, we have: supp(𝑃𝜋expl )𝑘(𝑠|𝑠0, 𝑔) ⊇ Ψ(𝑠,𝒜𝑘). Therefore:

supp(𝜈(𝑠|𝑔)) =
⋃︁

𝑘⩾0,𝑠0∈𝒮
supp(𝑃𝜋expl )𝑘(𝑠|𝑠0, 𝑔) (14.1.33)

⊇
⋃︁

𝑘⩾0,𝑠0∈𝒮
Ψ(𝑠0,𝒜𝑘) (14.1.34)

=
⋃︁
𝑠0∈𝒮

Ψ(𝑠0,
⋃︁
𝑘⩾0

𝒜𝑘) (14.1.35)

= 𝒮 (14.1.36)

This concludes the proof. The main property we use in the theorem is that 𝜇future(𝑔′|𝑠, 𝑠′, 𝑔) is independent
of 𝑠′. Therefore, a simple way to remove HER bias is to define 𝑝𝐿(𝑙) = 1𝑙=0. Still, this would not remove the
issue of vanishing rewards, since the fixed point of HER are the same than those of UVFA.

In the following, we will use again the results derived above. In particular, we know that:
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E
[︁ ̂︀𝛿𝜃HER

]︁
= E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

[︂
𝜕𝜃

1

2
(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2

]︂
(14.1.37)

with

𝜇HER(𝑠, 𝑎, 𝑠
′, 𝑔) = (1− 𝛼)𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝑃 (𝑠′|𝑠, 𝑎) + 𝛼

(︂∫︁
𝑔

𝜌𝒢(𝑔)𝜈(𝑠|𝑔)𝜋expl(𝑎|𝑠, 𝑔)𝜇future(𝑔|𝑠′, 𝑔)
)︂
𝑃 (𝑠′|𝑠, 𝑎)

(14.1.38)

𝜇future(𝑔
′|𝑠′, 𝑔) =

∑︁
𝑙

𝑝𝐿(𝑙)𝜙*(𝜋exp * 𝑃 )𝑙(𝑔′|𝑠′, 𝑔) (14.1.39)

𝜈(𝑠|𝑔) = 𝜌𝒢(𝑔)

∫︁
𝑠0

𝜌0(𝑠0|𝑔)
∑︁
𝑘

𝑝𝐾(𝑘)(𝜋exp * 𝑃 )𝑘(𝑠|𝑠0, 𝑔) (14.1.40)

14.2 Bias of HER in stochastic environments.

Here is a simple way to design counter-examples environments which exhibit this HER bias.
Consider a finite multi goal environment and add a single action 𝑎* which, from any state 𝑠,
sends the agent to a uniform random state 𝑠′ and then freezes it, which means the agent will
always stay at 𝑠′.

Both in theory and practice, HER will learn to always select the action 𝑎* (third plot in
Fig. 16.1). The intuition is the following: when the agent acts with 𝑎* and reaches a random
state 𝑠′, HER reinforces 𝑎* as a good way to reach 𝑠′ from 𝑠, while this was purely random.
We now formally state a corresponding theorem.

Let ℳ = ⟨𝒮,𝒢,𝒜, 𝑃,𝑅, 𝛾⟩ be a multi-goal finite Markov Decision Process, with 𝒢 = 𝒮 and
𝑅(𝑠, 𝑔) = 1𝑠=𝑔. We define 𝑆 = |𝒮| the number of states.

Let ℳ̃ be the augmented MDP with a freeze action 𝑎*, defined as:

• The augmented state space 𝒮 = 𝒮 × {0, 1}, where 𝑠 = (𝑠, 𝑥) is said to be frozen if 𝑥 = 1.

• The augmented action space 𝒜 = 𝒜 ∪ {𝑎*}, where 𝑎* is the freeze action.

• The goal space does not change (𝒢 = 𝒢 = 𝒮). For an augmented state 𝑠 = (𝑠, 𝑥), the
reward is �̃�(𝑠, 𝑔) = �̃�((𝑠, 𝑥), 𝑔) = 𝑅(𝑠, 𝑔)

• If 𝑠 = (𝑠, 𝑥) and 𝑠′ = (𝑠′, 𝑥′) are two augmented states, the transition operator 𝑃 (𝑠′|𝑠, 𝑎):

– If the state is frozen (𝑥 = 1), the agent can’t move: 𝑃 ((𝑠′, 𝑦)|(𝑠, 𝑥), 𝑎) = 1𝑠′=𝑠1𝑦=1

– If the state is not frozen (𝑥 = 0) and 𝑎 = 𝑎*, the agent is sent to a uniformly random
frozen state: 𝑃 ((𝑠′, 𝑦)|(𝑠, 0), 𝑎) = 1𝑦=1

1
𝒮

– Else, the dynamic is the same than forℳ: if 𝑥 = 0 and 𝑎 ̸= 𝑎*, then 𝑃 ((𝑠′, 𝑦)|(𝑠, 0), 𝑎) =
1𝑦=0𝑃 (𝑠

′|𝑠, 𝑎).

We can now prove the existence of MDPs such that HER will be biased in these environments.

Theorem 14.2. Letℳ be a finite MDP, and ℳ̃ the augmented MDP with the freeze action 𝑎*
defined above. We assume that for every 𝑠, 𝑎, 𝑔 the exploration policy satisfies 𝜋expl(𝑎|𝑠, 𝑔) > 0,
and that for every every 𝑠, 𝑔, 𝜈(𝑠|𝑔) > 0, where 𝜈 is defined in equation (14.1.10). This means
that from the given distribution, every state 𝑠 has a non-zero probability of being reached when
following the exploration policy conditioned by 𝑔: 𝜋expl(𝑎|𝑠, 𝑔).

Let 𝑄∞ be a fixed point of tabular HER, and 𝑄* the true optimal Q-function. Then, for
every unfrozen state (𝑠, 0) and goal 𝑔, HER overstimates the value of action 𝑎*:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) > 𝑄*((𝑠, 0), 𝑎*, 𝑔) (14.2.1)
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Proof.
The principle of the proof is the following. First, we prove that for frozen states 𝑠 = (𝑠, 1), HER converge

converge to the true value 𝑄∞(𝑠, 𝑎, 𝑔) = 𝑄*(𝑠, 𝑎, 𝑔). Then, we compute the action-value of action 𝑎* for every
unfrozen state for the true 𝑄* and for the fixed point 𝑄∞. HER samples transitions ((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔). Let
us consider the law of 𝑠′ knowing 𝑠, 𝑎*, 𝑔: with probability (1−𝛼) the goal 𝑔 was re-sampled from the future
sampling strategy, therefore, because after 𝑎* the position will be frozen, we know that 𝑠′ = 𝑔, the goal is
reached and the final return is 𝑂( 1

1−𝛾 ). With probability 𝛼, the goal 𝑔 the original goal, the law of 𝑠′ is
uniform, and the return is of order 𝑂( 1

𝑆(1−𝛾) ). Therefore, when estimating the return after action 𝑎* with

HER, the computed value will be of order 𝑂(
(1−𝛼)
1−𝛾 ), while the true value is of order 𝑂( 1

𝑆(1−𝛾) ).
We now prove the theorem. We consider 𝑄∞, a fixed point of the algorithm, which means that starting

from 𝑄∞, the stochastic update defined by HER has mean 0: E
[︁̂︁𝛿𝑄HER

]︁
= 0. We know that

E
[︁̂︁𝛿𝑄HER

]︁
= E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

[︂
𝜕𝜃

1

2
(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))2

]︂
(14.2.2)

= E(𝑠,𝑎,𝑠′,𝑔)∼𝜇HER

[︂
𝐸𝑠,𝑎,𝑔(𝑄𝜃(𝑠, 𝑎, 𝑔)−𝑅(𝑠, 𝑔)− 𝛾 sup

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔))

]︂
, (14.2.3)

where (𝐸𝑠,𝑎,𝑔) is the canonical basis of the tabular model. Therefore, for every (𝑠, 𝑎, 𝑔) (because 𝜇HER(𝑠, 𝑎, 𝑔) >
0 for every (𝑠, 𝑎, 𝑔)), we have:

𝑄∞(𝑠, 𝑎, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾E𝑠′∼𝜇HER(𝑠′|𝑠,𝑎,𝑔)

[︂
sup
𝑎′

𝑄∞(𝑠′, 𝑎′, 𝑔)

]︂
(14.2.4)

First, we prove that the values of frozen states 𝑄∞((𝑠, 1), 𝑎, 𝑔) is equal to the true optimal Q-values. In
that case, 𝑃 (𝑠′|(𝑠, 1), 𝑎) = 𝛿(𝑠,1)(𝑠

′) we can check that 𝜇HER(𝑠′|(𝑠, 1), 𝑎, 𝑔) = 𝛿(𝑠,1)(𝑠
′). Therefore:

𝑄∞((𝑠, 1), 𝑎, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾 sup
𝑎′

𝑄∞((𝑠, 1), 𝑎′, 𝑔) (14.2.5)

Therefore for every 𝑠, 𝑎, 𝑔, 𝑄∞((𝑠, 1), 𝑎, 𝑔) = 1
1−𝛾𝑅(𝑠, 𝑔).

Then, we compute the values of 𝑄∞((𝑠, 0), 𝑎*, 𝑔), with the freeze action for an unfrozen state. We have:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾E(𝑠′,𝑦)∼𝜇HER((𝑠′,𝑦)|(𝑠,0),𝑎*,𝑔) sup
𝑎′

𝑄∞((𝑠′, 𝑦), 𝑎′, 𝑔) (14.2.6)

= 𝑅(𝑠, 𝑔) +
𝛾

1− 𝛾
E(𝑠′,𝑦)∼𝜇HER((𝑠′,1)|𝑠,𝑎*,𝑔)

[︀
1𝑠′=𝑔

]︀
(14.2.7)

= 𝑅(𝑠, 𝑔) +
𝛾

1− 𝛾
𝜇HER((𝑠′, 𝑦) = (𝑔, 1)|𝑠, 𝑎, 𝑔) (14.2.8)

because 𝜇HER((𝑠′, 𝑦)|(𝑠, 0), 𝑎*, 𝑔) is non zero only if 𝑦 = 1, and 𝑄∞((𝑠′, 1), 𝑎′, 𝑔) = 1
1−𝛾𝑅(𝑠′, 𝑔) = 1

1−𝛾 1𝑠′=𝑔 .
We now compute 𝜇HER((𝑠′, 𝑦) = (𝑔, 1)|𝑠, 𝑎, 𝑔). We use that 𝑃 ((𝑠′, 𝑦)|(𝑠, 0), 𝑎*) = 1𝑦=1/𝑆, and 𝜇future(𝑔|(𝑠′, 𝑦)) =
1𝑠′ if 𝑦 = 1.

𝜇HER((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔) = (1− 𝛼)𝜇0((𝑠, 0), 𝑔)𝜋expl(𝑎*|(𝑠, 0), 𝑔)
1

𝑆
+ 𝛼

(︂∫︁
𝑔
𝜇0((𝑠, 0), 𝑔)𝜋expl(𝑎

*|(𝑠, 0), 𝑔)
)︂

1

𝑆
1𝑔=𝑠′

(14.2.9)

Therefore, for every 𝑠′ ̸= 𝑔: 𝜇HER((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔) < 𝜇HER((𝑠, 0), 𝑎*, (𝑔, 1), 𝑔). So:∑︁
𝑠′
𝜇HER((𝑠, 0), 𝑎*, (𝑠′, 1), 𝑔) < 𝑆𝜇HER((𝑠, 0), 𝑎*, (𝑔, 1), 𝑔) (14.2.10)

and finally 𝜇HER((𝑠′, 𝑦) = (𝑔, 1)|(𝑠, 0), 𝑎*, 𝑔) > 1
𝑆

. Then we have:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) > 𝑅(𝑠, 𝑔) +
𝛾

𝑆(1− 𝛾)
(14.2.11)

On the contrary, we can easily check that for any policy 𝜋, 𝑄𝜋((𝑠, 0), 𝑎*, 𝑔) = 𝑅(𝑠, 𝑔) + 𝛾
𝑆(1−𝛾) . In particular,

by taking 𝜋 = 𝜋*, we have:

𝑄∞((𝑠, 0), 𝑎*, 𝑔) > 𝑄*((𝑠, 0), 𝑎*, 𝑔) (14.2.12)

Generally, HER is overestimating chancy outcomes, by estimating that any action (even
random) that led to some goal was a good way to reach that goal. This is clear in the example
of the freeze-after-random-jump actions in Theorem 14.2. Thus, HER has no reason to learn
reliably in a stochastic environment. Other hindsight methods such as (Rauber et al., 2019)
experience a similar bias.



Chapter 15

Unbiased Multi-Goal Q-learning
with Infinitely Sparse Rewards

Our goal here is to formally define multi-goal 𝑄-learning with infinitely sparse rewards. In
general, the probability of reaching any goal exactly is 0: instead we will learn the probability
distribution of the goals reached by a policy, and compute the probability to reach each
infinitesimal element d𝑔 in goal space. This is done by treating everything as measures over 𝒢:
the reward 𝛿𝜙(𝑠)(d𝑔) is a measure, and the value functions 𝑉 𝜋(𝑠,d𝑔) or optimal action-value
function 𝑄*(𝑠, 𝑎,d𝑔) are measures on 𝒢 as well. In the following, we define these objects in
detail, and show how to learn them in practice.

First, in Section 15.1 we define an optimal Bellman operator 𝑇 on action-value measures,
and the optimal action-value measure 𝑄*(𝑠, 𝑎,d𝑔). Then in Section 15.2, we derive 𝛿-DQN, a
deep Q-learning algorithm with infinitely sparse rewards for multi-goal RL. Some experimental
results are in the next chapter, together with the results on unbiased actor-critic with infinitely
sparse rewards.

15.1 Optimal Bellman equation and optimal action-value
measure.

15.1.1 The optimal action-value measure
We first define 𝑄*(𝑠, 𝑎,d𝑔), the optimal action-value measure, the mathematical object cor-
responding to the usual optimal 𝑄-function 𝑄* but infinitely sparse rewards. The following
theorem defines the optimal Bellman operator for action-value measures, and 𝑄*(𝑠, 𝑎,d𝑔) as its
fixed point.

With continuous states and goals, in a stochastic environment, the goal-dependent optimal
𝑄-function 𝑄*

𝜀 with reward 𝑅𝜀(𝑠, 𝑔) = 1‖𝜙(𝑠)−𝑔‖⩽𝜀 vanishes when 𝜀 → 0: the probability of
exactly reaching a goal state is usually 0. Likewise, a direct application of TD would never
learn anything because rewards would likely never be observed.

Instead, the goal-dependent 𝑄-function is a measure over goals. Intuitively, for every
infinitesimally small set of goals d𝑔, the quantity 𝑄*(𝑠, 𝑎,d𝑔) is the expected amount of time
spent in d𝑔 by the policy that tries to maximize time spent in d𝑔, starting at (𝑠, 𝑎).

Formally, for every state-action (𝑠, 𝑎), 𝑄*(𝑠, 𝑎, ·) is a measure over goals, solution to the
Bellman equation

𝑄*(𝑠, 𝑎,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) max
𝑎′

𝑄*(𝑠′, 𝑎′,d𝑔) (15.1.1)

where, as above, 𝜙 : 𝑆 → 𝐺 is the function defining the target features, and where 𝛿𝜙(𝑠) is the
Dirac measure at 𝜙(𝑠) in goal space. This is an equality between measures, and the supremum
is a supremum of measures (Bogachev, 2007, Section 4.7).

205
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Existence and uniqueness of solutions, and a formal derivation of a TD algorithm, are
nontrivial in this setting. Uniqueness never holds without restrictions: the infinite measure
always solves (15.1.1). But it is not possible to restrict ourselves to finite-mass measures,
because sometimes the solution we want has infinite mass, as shown in Section 15.1.3. The need
to deal with possibly infinite measures restricts the use of uniqueness proofs by 𝛾-contractivity
arguments in some norm.

Intuitively, the total mass 𝑄*(𝑠, 𝑎,𝒢) of the goal state 𝒢 describes how much different action
sequences result in non-overlapping distributions of states. If the state space 𝒜 is finite and
|𝒜| = 𝐴, the total mass of the horizon-𝑡 part of the 𝑄*-function can be as much as 𝛾𝑡𝐴𝑡: this is
realized when every possible sequence of 𝑡 actions leads to a disjoint part of the state of goals.
In section 15.1.3 we provide a simple continuous MDP in which every action sequence leads
to a distinct state: as there are an infinite number of action sequences when 𝑡→∞, the total
mass 𝑄*(𝑠, 𝑎,𝒢) is infinite.

15.1.2 Existence of a goal-dependent 𝑄-function in continuous spaces
We prove the existence of a canonical solution to the optimal Bellman equation, equal both to
the smallest solution and to the limit of the horizon-𝑡 solution when 𝑡→∞.

Theorem 15.1 (Existence of a goal-dependent 𝑄-function in continuous spaces). Let 𝒬 be
the set of functions from 𝒮 ×𝒜 into positive measures over 𝒢. Assume the set of actions 𝒜 is
countable. Let 𝑇 be the Bellman operator mapping 𝑄 ∈ 𝒬 to 𝑇 ·𝑄 with

𝑇 ·𝑄(𝑠, 𝑎, ·) := 𝛿𝜙(𝑠)(·) + 𝛾 E𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) sup
𝑎′
𝑄(𝑠′, 𝑎′, ·) (15.1.2)

where the supremum is a supremum of measures and 𝛿𝜙(𝑠) is the Dirac measure at 𝜙(𝑠) ∈ 𝒢.
Let 0 ∈ 𝒬 be the measure 0.
Let 𝑄𝑡 := 𝑇 𝑡0. (By expanding the definition of 𝑇 , this is the solution of the expectimax

problem at time horizon 𝑡.) Then when 𝑡 → ∞, for every state-action (𝑠, 𝑎) and for every
measurable set 𝐺 ⊂ 𝒢, 𝑄𝑡(𝑠, 𝑎,𝐺) converges to a finite or infinite limit 𝑄*(𝑠, 𝑎,𝐺). This limit
𝑄* is an element of 𝒬 and solves the Bellman equation 𝑇𝑄* = 𝑄*. It is the smallest such
solution. In finite state spaces, it is the only solution with finite mass. Moreover, for any
goal-dependent policy 𝜋, its Bellman operator 𝑇𝜋 and 𝑄-value 𝑄𝜋 := lim𝑡→∞(𝑇𝜋)𝑡0 can be
defined similarly (see equation (15.1.6)) and satisfy 𝑄𝜋 ⩽ 𝑄* as measures.

Proof. Assume the action space 𝒜 is countable. Let 𝒬 be the set of measurable functions from 𝒮 ×𝒜 to the
set of measures on 𝒢.

For 𝑄1 and 𝑄2 in 𝒬, we write 𝑄1 ⩽ 𝑄2 if 𝑄1(𝑠, 𝑎,𝑋) ⩽ 𝑄2(𝑠, 𝑎,𝑋) for any state-action (𝑠, 𝑎) and
measurable set 𝑋 ⊂ 𝒢. The Bellman operator of Definition 15.1.2 acts on 𝒬 and is obviously monotonous: if
𝑄1 ⩽ 𝑄2 then 𝑇𝑄1 ⩽ 𝑇𝑄2.

Since the zero measure 0 ∈ 𝒬 is the smallest measure, we have 𝑇0 ⩾ 0. Since 𝑇 is monotonous, by
induction we have 𝑇 𝑡+10 ⩾ 𝑇 𝑡0 for any 𝑡 ⩾ 0. Thus, the (𝑇 𝑡0)𝑡⩾0 form an increasing sequence of measures.
Therefore, for every state-action (𝑠, 𝑎) and measurable set 𝑋, the sequence (𝑇 𝑡0)(𝑠, 𝑎,𝑋) is increasing, and
thus converges to a limit. We denote this limit by 𝑄*(𝑠, 𝑎,𝑋). We have to prove that 𝑄* ∈ 𝒬, namely, that
for each (𝑠, 𝑎), 𝑄*(𝑠, 𝑎, ·) is a measure. The only non-trivial point is 𝜎-additivity.

Denote 𝑄𝑡 := 𝑇 𝑡0. If (𝑋𝑖) is a countable collection of disjoint measurable sets, we have

𝑄*(𝑠, 𝑎,∪𝑖𝑋𝑖) = lim
𝑡→∞

𝑄𝑡(𝑠, 𝑎,∪𝑖𝑋𝑖) = lim
𝑡→∞

∑︁
𝑖

𝑄𝑡(𝑠, 𝑎,𝑋𝑖)

=
∑︁
𝑖

lim
𝑡→∞

𝑄𝑡(𝑠, 𝑎,𝑋𝑖) =
∑︁
𝑖

𝑄*(𝑠, 𝑎,𝑋𝑖)

where the limit commutes with the sum thanks to the monotone convergence theorem, using that 𝑄𝑡 is
non-decreasing. Therefore, 𝑄* is a measure.

Let us prove that 𝑇𝑄* = 𝑄*. We have

𝑇𝑄*(𝑠, 𝑎, ·) = 𝛿𝜙(𝑠) + 𝛾E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′

𝑄*(𝑠′, 𝑎′, ·) (15.1.3)

by definition. For any 𝑠′, denote �̃�𝑡(𝑠′, ·) := sup𝑎′ 𝑄𝑡(𝑠
′, 𝑎′, ·) where the supremum is as measures over 𝒢.

Since 𝑄𝑡 is non-decreasing, so is �̃�𝑡.
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For any state 𝑠′, we have

sup
𝑎′

𝑄*(𝑠′, 𝑎′, ·) = sup
𝑎′

sup
𝑡
𝑄𝑡(𝑠

′, 𝑎′, ·) = sup
𝑡

sup
𝑎′

𝑄𝑡(𝑠
′, 𝑎′, ·) = sup

𝑡
�̃�𝑡(𝑠

′, ·) (15.1.4)

since supremums commute. Now, since �̃�𝑡 is non-decreasing, thanks to the monotone convergence theorem,
the supremum commutes with integration over 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) (which does not depend on 𝑡), namely,

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑎′

𝑄*(𝑠′, 𝑎′, ·) = E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup
𝑡
�̃�𝑡(𝑠

′, ·)

= sup
𝑡

E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)�̃�𝑡(𝑠
′, ·) = sup

𝑡
E𝑠′∼𝑃 (𝑠′|𝑠,𝑎) sup

𝑎′
𝑄𝑡(𝑠

′, 𝑎′, ·) (15.1.5)

and so 𝑇𝑄* = sup𝑡 𝑇𝑄𝑡. Now, since 𝑄𝑡 = 𝑇 𝑡0, we have 𝑇𝑄𝑡 = 𝑇 𝑡+10, so that sup𝑡⩾0 𝑇𝑄
𝑡 = sup𝑡⩾1 𝑇

𝑡0 =
𝑄*. So 𝑄* is a fixed point of 𝑇 .

Let us prove that 𝑄* is the smallest such fixed point. Let 𝑄′ such that 𝑇𝑄′ = 𝑄′. Since 0 ⩽ 𝑄′ and 𝑇 is
monotonous, we have 𝑇0 ⩽ 𝑇𝑄′ = 𝑄′. By induction, 𝑇 𝑡0 ⩽ 𝑄′ for any 𝑡 ⩾ 0. Therefore, sup𝑡 𝑇 𝑡0 ⩽ 𝑄′, i.e.,
𝑄* ⩽ 𝑄′.

The statement for finite state spaces reduces to the classical uniqueness property of the usual 𝑄 function,
separately for each goal state.

Optimality of the policy is proved by following classical arguments. Let 𝜋(𝑎|𝑠, 𝑔) be any goal-dependent
policy and let 𝑄 ∈ 𝒬. Define the Bellman operator associated to 𝜋 by

(𝑇𝜋𝑄)(𝑠, 𝑎, ·) := 𝛿𝑠 + 𝛾E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)
∑︁
𝑎′

(𝜋 *𝑄)(𝑠′, 𝑎′, ·) (15.1.6)

where for each action 𝑎, the measure (𝜋*𝑄) ∈ 𝒬 is defined via (𝜋*𝑄)(𝑠′, 𝑎′, 𝑋) :=
∫︀
𝑔∈𝑋 𝜋(𝑎′|𝑠′, 𝑔)𝑄(𝑠′, 𝑎′, d𝑔),

so that the sum of (𝜋*𝑄) over all actions 𝑎′ represents the expected value of𝑄(𝑠′, 𝑎′, ·) under the goal-dependent
policy 𝜋; this formulation allows the policy to depend on the goal.

Since 𝜋 is a probability distribution, we have∑︁
𝑎′

(𝜋 *𝑄)(𝑠′, 𝑎′, 𝑋) ⩽ max
𝑎′

𝑄(𝑠′, 𝑎′, 𝑋) (15.1.7)

where the right-hand-side is a maximum of measures (thus selecting the best 𝑎′ for each goal): this is clear
from decomposing 𝑋 into the components where each action 𝑎′ is optimal.

Therefore, for any 𝑄 ∈ 𝒬, we have the inequality of measures

𝑇𝜋𝑄 ⩽ 𝑇𝑄 (15.1.8)

where 𝑇 is the optimal Bellman operator from above. Since the latter is monotonous over 𝑄 ∈ 𝒬, for any
𝑄,𝑄′ ∈ 𝒬 with 𝑄 ⩽ 𝑄′, we have 𝑇𝜋𝑄 ⩽ 𝑇𝑄′.

Consequently, by induction, (𝑇𝜋)𝑡0 ⩽ 𝑇 𝑡0 for any horizon 𝑡 ⩾ 0. The monotonous limit 𝑄𝜋 :=
lim𝑡→∞(𝑇𝜋)𝑡0 exists for the same reasons as 𝑇 𝑡0, representing the 𝑄-function (measure) of policy 𝜋.
Therefore, 𝑄𝜋 = lim𝑡→∞(𝑇𝜋)𝑡0 ⩽ lim𝑡→∞ 𝑇 𝑡0 = 𝑄*. This proves that the policy 𝜋 has returns no greater
than 𝑄*.

15.1.3 Examples of MDPs with Infinite Mass for 𝑄*

Here are two simple examples of MDPs with finite action space, for which the mass of the
goal-dependent 𝑄-measure 𝑄*(𝑠, 𝑎,d𝑔) is infinite. The first has discrete states, the second,
continuous ones.

Take for 𝒮 an infinite rooted dyadic tree, namely, 𝒮 = {∅, 0, 1, 00, 01, . . .} the set of binary
strings of finite length 𝑘 ⩾ 0, and 𝒢 = 𝒮. Consider the two actions “add a 0 at the end” and
“add a 1 at the end”. Then, for every state 𝑠, 𝑄*(𝑠, 𝑎, ·) is a measure that gives mass 𝛾𝑘 to
all states 𝑔 that are extensions of 𝑠 by a length-𝑘 string that starts with 𝑎. Thus, its mass is
1 +

∑︀
𝑘⩾1 𝛾

𝑘2𝑘−1. This is infinite as soon as 𝛾 ⩾ 1/2. This extends to any number of actions
by considering higher-degree trees.

A similar example with continuous states is obtained as follows. Let 𝒮 = [0; 1)× [0; 1). Let
𝐶 = {∅, 0, 1, 00, 01, . . .} the dyadic tree above. For each string 𝑤 ∈ 𝑋, consider the set 𝐵𝑤 ⊂ 𝒮
defined as follows: 𝐵𝑤 is made of those points (𝑥, 𝑦) ∈ 𝒮 such that the binary expansion of
𝑥 starts with 𝑤, and 𝑦 ∈ [1− 1/2𝑘; 1− 1/2𝑘+1) where 𝑘 is the length of 𝑤. Graphically, this
creates a tree-like partition of the square 𝒮, where the empty string corresponds to the bottom
half, the strings 𝑤 = 0 and 𝑤 = 1 correspond to two sets on the left and right above the bottom
hald, etc. Define the following MDP with two actions 0 and 1: with action 0, every state
𝑠 ∈ 𝐵𝑤 goes to a uniform random state in 𝐵𝑤0, and with action 1, every state 𝑠 ∈ 𝐵𝑤 goes to
a uniform random state in 𝐵𝑤1. The goal-dependent 𝑄-function 𝑄* is similar to the dyadic
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tree above, but is continuous. Its mass is infinite for the same reasons.

15.2 𝑄-learning with function approximations, with in-
finitely sparse rewards.

From the fixed point equation for 𝑄*, we would like to learn a model of 𝑄*(𝑠, 𝑎,d𝑔) with
function approximation. We will represent measures over goals via their density with respect to
the goal sampling function 𝜌𝒢 of the environment. Namely, we will approximate 𝑄*(𝑠, 𝑎,d𝑔) by
a model 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) where 𝑞𝜃(𝑠, 𝑎, 𝑔) is an ordinary function, and learn 𝑞𝜃.
Hence, 𝑞𝜃 may be approximated by any parametric model, such as a neural network. This is
similar to our parametrization 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) for the successor states operator
used in Part IV.

In this section, we formally derive the 𝛿-DQN update. Let us consider parametric models
for 𝑄:

𝑄𝜃(𝑠, 𝑎,d𝑔) := 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) (15.2.1)

and we will learn 𝑞𝜃. The factor 𝜌𝒢 , or some other measure, is needed to get a well-defined
object in continuous state spaces. In discrete spaces, it results in an 𝑔-dependent scaling of the
𝑄 function, which still has the same optimal policy for each 𝑔.

The resulting parametric update is off-policy: we assume access to a sampling distribution
(𝑠, 𝑎, 𝑠′) ∼ 𝜌SA(d𝑠,d𝑎)𝑃 (d𝑠

′|𝑠, 𝑎) in a Markov decision. Typically, this can correspond to
transitions (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) from exploration trajectory with 𝑔 ∼ 𝜌𝒢 , 𝑠0 ∼ 𝜌0(.|𝑔), then 𝑎𝑡 ∼
𝜋expl(.|𝑠𝑡, 𝑔) and 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡). Here, our statement with a distribution 𝜌SA is more general.

Similarly to the norms defined for the successor states operator in Section 6.4, we define
the following norm on 𝑄-value measure: If 𝑄1(𝑠, 𝑎,d𝑔) and 𝑄2(𝑠, 𝑎,d𝑔) are two action-value
measures such continuous with respect to 𝜌𝒢 : 𝑄1(𝑠, 𝑎,d𝑔) = 𝑞1(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) and 𝑄2(𝑠, 𝑎,d𝑔) =
𝑞2(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔), then

‖𝑄1 −𝑄2‖2𝜌SA,𝜌𝒢
:= E(𝑠,𝑎)∼𝜌SA, 𝑔∼𝜌𝒢 [(𝑞1(𝑠, 𝑎, 𝑔)− 𝑞2(𝑠, 𝑎, 𝑔))

2
] (15.2.2)

If 𝑄1 or 𝑄2 are not continuous with respect to 𝜌𝒢 , then the norm is infinite.

We can now define the 𝛿-DQN update, which then leads to 𝛿-DQN (Algorithm 14). We
present some experimental results in the next chapter, together with experiments with unbiased
actor-critic methods with infinitely sparse rewards.

Theorem 15.2. Let 𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌𝒢(d𝑔) be a current estimate of 𝑄*(𝑠, 𝑎,d𝑔).
We define 𝑄tar := 𝑇 · 𝑄𝜃, a terget 𝑄-measure for 𝑄𝜃 defined via the optimal Bellman

equation.
Let (𝑠, 𝑎, 𝑠′) ∼ 𝜌𝑆𝐴(d𝑠,d𝑎)𝑃 (𝑠

′|𝑠, 𝑎) be samples of the environment and 𝑔 ∼ 𝜌𝒢 sampled
independently. Let ̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠

′, 𝑔) be

̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠
′, 𝑔) := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠)) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)

(︁
𝛾max

𝑎′
𝑞tar(𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)
)︁

(15.2.3)

Then ̂︀𝛿𝜃𝛿-DQN is an unbiased estimate of the Bellman error:

E
[︁ ̂︀𝛿𝜃𝛿-DQN

]︁
= −1

2
𝜕𝜃 ‖𝑄𝜃 −𝑄tar‖2𝜌SA,𝜌𝒢 (15.2.4)

In particular, the true optimal state-action measure 𝑄* is a fixed point of this update: if
𝑄𝜃 = 𝑄tar = 𝑄* then E

[︁ ̂︀𝛿𝜃𝛿-DQN

]︁
= 0.

Here we have presented the update using a single function 𝑞𝜃. Nonetheless, using an
additional “target network” with parameter 𝜃0 (typically a previous value of 𝜃), is a common
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practice for parametric 𝑄-learning. This question was addressed for the successor states operator
in Section 7.6, and we will not give additional details here.

For this theorem, we sample goals 𝑔 independently of (𝑠, 𝑎, 𝑠′). In practice, this could be
a source of variance, as sampling goals far from the current state should produce close-to-0
Q-values. If we instead sample goals from a distribution 𝜇(𝑔|𝑠, 𝑎), this introduces an implicit
scaling factor 𝛼(𝑠, 𝑔) to the reward. This is discussed 16.1.2 in the case of the 𝑉 -function.

Proof. By definition of the optimal Bellman operator 𝑇 and the target 𝑄tar, we have:

𝑇𝑄tar(𝑠, 𝑎, d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)

[︂
sup
𝑎′

𝑞tar(𝑠
′, 𝑎′, 𝑔)

]︂
𝜌𝒢(d𝑔) (15.2.5)

By definition of 𝐽 ′
𝑄(𝜃) and of the norm ‖·‖𝜌SA,𝜌𝒢 , we have

𝐽 ′
𝑄(𝜃) =

1

2
‖𝑄𝜃‖2𝜌SA,𝜌

− ⟨𝑄𝜃, 𝑇𝑄tar⟩𝜌SA,𝜌 (15.2.6)

=
1

2

∫︁
𝑠,𝑎,𝑔

𝑞2𝜃(𝑠, 𝑎, 𝑔)𝜌SA(d𝑠, d𝑎)𝜌(d𝑔)−
∫︁
𝑠,𝑎,𝑔

𝑞𝜃(𝑠, 𝑎, 𝑔)(𝑇 ·𝑄tar)(𝑠, 𝑎, d𝑔)𝜌SA(d𝑠,d𝑎) (15.2.7)

Consequently,

𝜕𝜃𝐽
′(𝜃) =

∫︁
𝑠,𝑎,𝑔

𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌SA(d𝑠, d𝑎)𝜌𝒢(d𝑔)−
∫︁
𝑠,𝑎,𝑔

𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)𝑇𝑄tar(𝑠, 𝑎, d𝑔)𝜌SA(d𝑠,d𝑎)

(15.2.8)

=

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠, d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔) (𝑄𝜃(𝑠, 𝑎, d𝑔)− 𝑇𝑄tar(𝑠, 𝑎, d𝑔)) (15.2.9)

assuming 𝑞𝜃 is smooth enough so that the derivative makes sense and commutes with the integral.
Moreover, we have:

𝑇𝑄tar(𝑠, 𝑎, d𝑔)−𝑄𝜃(𝑠, 𝑎, d𝑔) = 𝛿𝜙(𝑠)(d𝑔)+ 𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[sup
𝑎′

𝑞tar(𝑠
′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)]𝜌𝒢(d𝑔) (15.2.10)

Therefore,

−𝜕𝜃𝐽 ′(𝜃) =

∫︁
𝑠,𝑎

𝜌SA(d𝑠,d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)𝛿𝜙(𝑠)(d𝑔)

+

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠, d𝑎)𝜌𝒢(d𝑔)

(︂
𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[sup

𝑎′
𝑞𝜃0 (𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)]
)︂ (15.2.11)

=

∫︁
𝑠,𝑎

𝜌SA(d𝑠,d𝑎)𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠))

+

∫︁
𝑠,𝑎,𝑔

𝜌SA(d𝑠, d𝑎)𝜌𝒢(d𝑔)

(︂
𝛾 E𝑠′∼𝑃 (𝑠′|𝑠,𝑎)[sup

𝑎′
𝑞𝜃0 (𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)]
)︂ (15.2.12)

This update leads to 𝛿-DQN (Algorithm 14), which corresponds to standard DQN with
infinitely sparse rewards. For continuous actions, 𝛿-DQN can be modified similarly to DDPG
(Lillicrap et al., 2016). We present some experimental results in the next chapter, together with
experiments with unbiased actor-critic methods with infinitely sparse rewards.

15.3 Example: the tabular case.

The tabular case highlights the difference between UVFA and 𝛿-DQN. When a transition
(𝑠, 𝑎, 𝑠′, 𝑔) is observed, the UVFA update is:

𝑄(𝑠, 𝑎, 𝑔)← 𝑄(𝑠, 𝑎, 𝑔) + 𝜂
(︁
1𝜙(𝑠)=𝑔 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′, 𝑔)−𝑄(𝑠, 𝑎, 𝑔)

)︁
(15.3.1)

where 𝜂 is the learning rate. The only modified value is 𝑄(𝑠, 𝑎, 𝑔).
With 𝛿-DQN, we learn the density 𝑞 of 𝑄(𝑠, 𝑎,d𝑔) with respect to 𝜌𝒢 . Assume that 𝜌𝒢(𝑔)

is the uniform measure over the finite goal space 𝒢. Then we learn 𝑞(𝑠, 𝑎, 𝑔) = |𝒢| ×𝑄(𝑠, 𝑎, 𝑔).
For a tabular model, the 𝛿-DQN update in Equation (15.2.3) is

𝑞(𝑠, 𝑎, 𝜙(𝑠))← 𝑞(𝑠, 𝑎, 𝜙(𝑠)) + 𝜂 (15.3.2)

𝑞(𝑠, 𝑎, 𝑔)← 𝑞(𝑠, 𝑎, 𝑔) + 𝜂
(︁
𝛾max

𝑎′
𝑞(𝑠′, 𝑎′, 𝑔)− 𝑞(𝑠, 𝑎, 𝑔)

)︁
. (15.3.3)
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Algorithm 14 𝛿-DQN

Input: Randomly initialized model 𝑞𝜃(𝑠, 𝑎, 𝑔); 𝜙; exploration policy 𝜋expl(𝑎|𝑠, 𝑔); goal
function 𝜙; memory buffer TransitionMemory, 𝑇 the maximum trajectory length
repeat

for 𝐾 trajectories do
Get a goal 𝑔 and an initial state 𝑠0
for 0 ⩽ 𝑡 ⩽ 𝑇 steps do do

Sample 𝑎𝑡 ∼ 𝜋expl(.|𝑠𝑡, 𝑔), execute 𝑎𝑡 and observe 𝑠𝑡+1

Store in the transition memory the transition TransitionMemory← (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)
end for
for 𝐿 gradient steps do

Sample (𝑠, 𝑎, 𝑠′) ∼ TransitionMemory and 𝑔 ∼ 𝜌𝒢̂︀𝛿𝜃𝛿-DQN := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝜙(𝑠)) + 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔) (𝛾max𝑎′ 𝑞𝜃(𝑠
′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)).

Stochastic gradient step: 𝜃 ← 𝜃 + 𝜂 ̂︀𝛿𝜃𝛿-DQN.
end for

end for
until end of learning

Here two values are updated: in addition to (𝑠, 𝑎, 𝑔), the trajectory visiting 𝑠 is also used to
update the value for the goal 𝜙(𝑠). The first part always increases 𝑞 at the goal 𝜙(𝑠) achieved
by 𝑠; the second part at (𝑠, 𝑎, 𝑔) has no reward contribution, and decreases 𝑞 at (𝑠, 𝑎, 𝑔) by
a factor (1− 𝜂) while propagating the value from 𝑠′. In expectation, the decrease at (𝑠, 𝑎, 𝑔)
compensates the increase at (𝑠, 𝑎, 𝜙(𝑠)): this compensation is exact when 𝑞 is the exact solution.

As a comparison, the tabular HER update works as follows: when observing a trajectory
(𝑔, 𝑠0, 𝑎0, 𝑠1, ...), a transition (𝑠, 𝑎, 𝑠′, 𝑔) = (𝑠𝐾 , 𝑎𝐾 , 𝑠𝐾+1, 𝑔) for some 𝐾 ⩾ 0 is selected; then
HER samples 𝐿 ⩾ 𝐾, defines 𝑔′ := 𝜙(𝑠𝐿) as the re-sampled goal, then applies the UVFA update
(15.3.1) but with (𝑠, 𝑎, 𝑠′, 𝑔′) instead of (𝑠, 𝑎, 𝑠′, 𝑔). When 𝐿 = 𝐾, the goal sampled by HER is
𝑔′ = 𝜙(𝑠): this is somewhat similar to 𝛿-DQN, except 𝛿-DQN resamples an independent goal
instead of 𝑔′ for the second term instead. Despite this similarity, HER is biased in stochastic
environments and can converge to a low-return policy, while 𝛿-DQN is unbiased.

In this chapter, we introduced a Q-learning approach for multi-goal RL via infinitely sparse
rewards. In the next chapter, we introduce an actor critic algorithm, using the same principles.



Chapter 16

Unbiased Multi-Goal Actor Critic
with Infinitely Sparse Rewards

16.1 Unbiased Policy Evaluation with Infinitely Sparse Re-
wards

Similarly to 𝛿-DQN, there exists an actor-critic algorithm for multi-goal environments with
infinitely sparse rewards. We start with policy evaluation, then derive the policy gradient
algorithm.

16.1.1 Policy evaluation via the successor goal measure 𝑀𝜋(𝑠, 𝑔, d𝑔′)

Learning the value measure 𝑉 𝜋(𝑠,d𝑔) defined in Section 13.3.2 directly without bias poses tech-
nical issues due to the double dependency of 𝑉 𝜋(𝑠,d𝑔) on 𝑔 (first via the location of the reward,
second, via the goal-dependent policy 𝜋(.|., 𝑔)). This is discussed in Section 16.1.2. Instead,
we learn a richer object, 𝑀𝜋(𝑠, 𝑔, d𝑔′), the successor goal measure defined in Section 13.2.2.
It represents the value function of 𝑠 if the reward is a Dirac at 𝑔′ but the agent follows the
policy 𝜋(𝑎|𝑠, 𝑔) for goal 𝑔. Compared to 𝑉 𝜋(𝑠,d𝑔), 𝑀𝜋(𝑠, 𝑔, d𝑔′) splits the two effects of the
goal 𝑔 in two variables 𝑔 and 𝑔′. As explained in Section 13.3.2, 𝑉 𝜋(𝑠,d𝑔) can be derived from
𝑀𝜋(𝑠, 𝑔, d𝑔′) as 𝑉 𝜋(𝑠,d𝑔) =𝑀𝜋(𝑠, 𝑔, d𝑔).

We can now derive an unbiased 𝛿-TD update for 𝑀𝜋. The following theorem is similar to
the TD update for successor states in Section 7.3. We learn a model 𝑚𝜃(𝑠, 𝑔, 𝑔

′) of its density
with respect to 𝜌𝒢 , namely, 𝑀𝜃(𝑠, 𝑔, d𝑔

′) = 𝑚𝜃(𝑠, 𝑔, 𝑔
′)𝜌𝒢(d𝑔

′).
We consider a measure 𝜌SG(d𝑠,d𝑔) of state-goals pairs, without any additional hypothesis.

Typically, 𝜌SG can be a fixed dataset, or the distribution of states 𝑠 along trajectories observed
when aiming at a goal 𝑔. In particular, we do not assume that 𝑠 and 𝑔 are independent.

We consider the norm ‖.‖𝜌SG
defined as:

‖𝑚(𝑠, 𝑔, 𝑔′)𝜌𝒢(d𝑔
′)‖2𝜌SG

:=

∫︁
𝑠,𝑔,𝑔′

𝜌SG(d𝑠,d𝑔)𝜌𝒢(d𝑔
′)𝑚2(𝑠, 𝑔, 𝑔′).

Moreover, we assume that 𝜌𝒢 is the law of the achieved goal 𝜙(𝑠) for (𝑠, 𝑔) ∼ 𝜌SG.

Theorem 16.1. Let 𝑀𝜃(𝑠, 𝑔, d𝑔
′) = 𝑚𝜃(𝑠, 𝑔, 𝑔

′)𝜌𝒢(d𝑔
′) be a current estimate of 𝑀𝜋(𝑠, 𝑔, d𝑔′).

Consider 𝑀 tar(𝑠, 𝑔, d𝑔′) = 𝛿𝜙(𝑠)(d𝑔
′) + E𝑎∼𝜋(𝑎|𝑠,𝑔),𝑠′∼𝑃 (d𝑠′|𝑠,𝑎) [𝑚𝜃(𝑠, 𝑔, 𝑔

′)] 𝜌(d𝑔′), a target esti-
mate for 𝑀𝜃 defined via the Bellman equation (13.2.10).

Let (𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′) be samples of the environment such that 𝑎 ∼ 𝜋(𝑎|𝑠, 𝑔), 𝑠′ ∼ 𝑃 (𝑠′|𝑠, 𝑎) and
𝑔′ ∼ 𝜌𝒢 is a goal sampled independently. Let ̂︀𝛿𝜃𝛿-TD be

̂︀𝛿𝜃𝛿-TD(𝑠, 𝑠
′, 𝑔, 𝑔′) := 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝜙(𝑠)) + 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝑔

′) (𝛾𝑚tar(𝑠
′, 𝑔, 𝑔′)−𝑚𝜃(𝑠, 𝑔, 𝑔

′)) (16.1.1)

211
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Then ̂︀𝛿𝜃𝛿-TD is an unbiased estimate of the Bellman error:

E𝑠,𝑎,𝑠′,𝑔,𝑔′
[︁ ̂︀𝛿𝜃𝛿-TD(𝑠, 𝑎, 𝑠

′, 𝑔, 𝑔′)
]︁
= −1

2
𝜕𝜃‖𝑀𝜃 − 𝑇𝜋𝑀tar‖2𝜌SG (16.1.2)

In particular, the true successor goal measure 𝑀𝜋(𝑠, 𝑔, d𝑔′) is a fixed point of this update: if
𝑀𝜃 =𝑀𝜋, then E

[︁ ̂︀𝛿𝜃𝛿-TD

]︁
= 0.

Proof. This Theorem is a particular case of Theorem 7.11 on TD learning for the successor states operator
with features of the state. Indeed, we can apply this theorem with:

• 𝑀𝜋(𝑠, 𝑔, d𝑔′) = 𝜓*�̃�((𝑠, 𝑔), (d𝑠′, d𝑔′)) corresponds to 𝑀𝜙 in the theorem.

• 𝑀𝜃(𝑠, d𝑔
′) = 𝑚𝜃(𝑠, 𝑔

′)𝜌𝒢(d𝑔
′) = 𝑚𝜃(𝑠, 𝑔, 𝑔

′)𝜌𝒢(d𝑔
′) is our current estimate of 𝑀𝜋(𝑠, 𝑔, d𝑔′).

• The target 𝑀tar corresponds to the target (𝑀𝜙)tar Theorem 7.11, by definition in Definition-
Theorem 13.3.

• The sampling distribution 𝜌𝒢 satisfies the constraint that 𝜌𝒢 := 𝜙*𝜌SG.

• The estimator ̂︀𝛿𝜃F−TD−𝜙 in Theorem 7.11 is equal to the update ̂︀𝛿𝜃𝛿-TD:

̂︀𝛿𝜃F-TD-𝜙(𝑠, 𝑠
′, 𝑔2) := 𝜕𝜃𝑚𝜃(𝑠, 𝜓(𝑠)) + 𝜕𝜃𝑚𝜃(𝑠, 𝑔2)

(︀
𝛾𝑚𝜃(𝑠

′, 𝑔2)−𝑚𝜃(𝑠, 𝑔2)
)︀

= 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝜙(𝑠)) + 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝑔2)
(︀
𝛾𝑚𝜃(𝑠

′, 𝑔, 𝑔2)−𝑚𝜃(𝑠, 𝑔, 𝑔2)
)︀

= ̂︀𝛿𝜃𝛿-TD(𝑠, 𝑠′, 𝑔, 𝑔2)

• The norm ‖.‖𝜌⊗𝜏 with 𝜌 = 𝜌SG and 𝜏 = 𝜌𝒢 is equal to the norem ‖.‖𝜌SG .
Hence, we can apply Theorem 7.11.

The update ̂︀𝛿𝜃𝛿-TD is similar to the Forward TD for the successor states operator. It has
two parts: the first part 𝜕𝜃𝑚𝜃(𝑠, 𝑔, 𝜙(𝑠)) represents the reward update for the goal achieved in
the current state 𝑠, and removes the vanishing reward issue. The second part propagates the
rewards along transitions.

We can also define a horizon-𝑛 𝛿-TD(𝑛) update if we have access to longer sub-trajectories
𝜏 = (𝑔, 𝑠0, 𝑎0, 𝑠1, ...). The update at a state 𝑠𝑘 in the trajectory is

̂︀𝛿𝜃𝛿-TD(𝑛)(𝜏, 𝑘, 𝑔
′) :=

𝑛−1∑︁
𝑙=0

𝛾𝑙𝜕𝜃𝑚𝜃(𝑠𝑘, 𝑔, 𝜙(𝑠𝑘+𝑙))+𝜕𝜃𝑚𝜃(𝑠𝑘, 𝑔, 𝑔
′) (𝛾𝑛𝑚𝜃(𝑠𝑘+𝑛, 𝑔, 𝑔

′)−𝑚𝜃(𝑠𝑘, 𝑔, 𝑔
′))

(16.1.3)
where 𝑔′ ∼ 𝜌𝒢 is sampled independently. This result is not formalized here, but is proved for the
successor states operator in Theorem 7.7. The first part increases the value estimate at state 𝑠𝑘
for every of the 𝑛 goals 𝜙(𝑠𝑘), ..., 𝜙(𝑠𝑘+𝑛−1) achieved in the next 𝑛 steps: this corresponds to
the 𝑛-step return with Dirac rewards. The second part propagates the value along transitions.
This is similar to HER in that future goals achieved along the trajectory are explicitly used,
and could thus improve sample efficiency. However, computational complexity is an issue. In
non-multi-goal environments, algorithms such as PPO (Schulman et al., 2017) compute the
TD(𝑛) update at every step of the trajectory. This is computable with 𝑂(𝑛) forward passes
through the value model 𝑣𝜃, because it only requires to compute 𝑣𝜃(𝑠0), . . . , 𝑣𝜃(𝑠𝑛). Here we
have to compute 𝑚𝜃(𝑠𝑘, 𝑔, 𝜙(𝑠𝑘+𝑙)) for every 𝑘 and 𝑙, leading to an 𝑂(𝑛2) complexity (though
this could potentially be sub-sampled as in HER). This makes it slow in practice, and 𝛿-TD(𝑛)
was not tested experimentally here.

For this theorem, we sample goals 𝑔′ independently of 𝜏 . In practice, this could be a source
of variance, as sampling goals far from the current state should produce close-to-0 V-values.
If we instead sample goals from a distribution 𝜇(𝑔|𝑠, 𝑎), this introduces an implicit scaling
factor 𝛼(𝑠, 𝑔) to the reward. This is discussed in details in the next section in the case of the
𝑉 -function.

16.1.2 Obstacles for learning the multi-goal value measure 𝑉 𝜋(𝑠, d𝑔)
directly via a temporal difference algorithm.

We briefly show why learning 𝑉 𝜋 directly without bias poses technical issues, stemming from
the necessity to work on-policy for 𝑉 and the resulting correlation between visited states and
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goals along trajectories in the training set. As a result, the “obvious” analogue of 𝛿-DQN
for 𝑉 introduces uncontrolled bias and implicit preferences among all possible states 𝑠 that
achieve the same goal 𝑔. This problem disappears only if the correspondence between 𝑠 and 𝑔
is one-to-one (e.g., 𝜙 = Id). This is why we learn the more complicated object 𝑀𝜋 instead of
𝑉 𝜋 in Section 16.1.

Assume similarly to Theorem 16.1 that we can sample state-goal pairs from a distribution
𝜌SG(d𝑠,d𝑔) over 𝒮 × 𝒢, and define the norm ‖ · ‖𝜌SG as

‖𝑉 ‖𝜌SG
=

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)

(︂
𝑉 (𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂2

(16.1.4)

where 𝑉 (𝑠,d𝑔)
𝜌𝒢(d𝑔) is the density of 𝑉 (𝑠,d𝑔) with respect to 𝜌𝒢(d𝑔) (if it does not exist, the norm

is infinite). We assume we have a model 𝑉𝜃(𝑠,d𝑔) = 𝑣𝜃(𝑠, 𝑔)𝜌𝒢(d𝑔), a target 𝑉tar(𝑠,d𝑔) =
𝑣tar(𝑠, 𝑔)𝜌𝒢(d𝑔), and want to estimate:

1

2
𝜕𝜃‖𝑉𝜃 − 𝑇𝜋𝑉tar‖2𝜌SG (16.1.5)

where 𝑇𝜋𝑉 (𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + 𝛾E𝑠′∼𝑃𝜋(.|𝑠,𝑔)𝑉 (𝑠′,d𝑔). Then, informally, we have:

1

2
𝜕𝜃‖𝑉𝜃 − 𝑇𝜋𝑉tar‖2𝜌SG

=
1

2
𝜕𝜃

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)

(︂
𝑉𝜃(𝑠,d𝑔)

𝜌𝒢(d𝑔)
− 𝑇𝑉tar(𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂2

=
1

2
𝜕𝜃

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)

(︂
𝑣𝜃(𝑠, 𝑔)−

𝑇𝑉tar(𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂2

=

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)

(︂
𝑣𝜃(𝑠, 𝑔)−

𝑇𝑉tar(𝑠,d𝑔)

𝜌𝒢(d𝑔)

)︂
=

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)
(︀
𝑣𝜃(𝑠, 𝑔)− 𝛾E𝑠′∼𝑃𝜋(.|𝑠,𝑔) [𝑣tar(𝑠′, 𝑔)]

)︀
+

+

∫︁
𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)
𝛿𝜙(𝑠)(d𝑔)

𝜌𝒢(d𝑔)

If we assume that 𝜌SG(d𝑠,d𝑔) has a density 𝛼(𝑠, 𝑔) with respect to 𝜌SG(d𝑠)⊗ 𝜌𝒢(d𝑔), namely,
𝜌SG(d𝑠,d𝑔) = 𝛼(𝑠, 𝑔)𝜌SG(d𝑠)𝜌𝒢(d𝑔), then the second part, corresponding to the Dirac reward,
is equal to:∫︁

𝑠,𝑔

𝜌SG(d𝑠,d𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)
𝛿𝜙(𝑠)(d𝑔)

𝜌𝒢(d𝑔)
=

∫︁
𝑠,𝑔

𝜌SG(d𝑠)𝛼(𝑠, 𝑔)𝜕𝜃𝑣𝜃(𝑠, 𝑔)𝛿𝜙(𝑠)(d𝑔)

=

∫︁
𝑠

𝜌SG(d𝑠)𝛼(𝑠, 𝜙(𝑠))𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠))

If 𝛼(𝑠, 𝑔) is always equal to 1, the integral
∫︀
𝑠
𝜌SG(d𝑠)𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) can be estimated without

bias by sampling 𝑠 ∼ 𝜌SG(d𝑠) and estimating 𝑣𝜃(𝑠, 𝜙(𝑠)).
However, the case 𝛼(𝑠, 𝑔) = 1 for every 𝑠, 𝑔 corresponds to 𝑠 and 𝑔 independent in 𝜌SG. This

is difficult to realize in practice. Learning 𝑉 requires actions to be selected on-policy (term
E𝑠′∼𝑃𝜋(.|𝑠,𝑔) above). If we set a goal 𝑔 and an initial state 𝑠0, and generate an exploration
trajectory by following the policy 𝜋(.|., 𝑔) for that goal, obviously the states 𝑠 visited by the
trajectory are going to be correlated to 𝑔, by an unknown factor 𝛼. Independence could be
ensured by re-sampling a new target goal at each step, independently from the current state,
and selecting the next action from the policy for this goal. But such an exploration strategy
would be essentially random and would not be efficient.

Assume we just ignore this problem and sample exploration trajectories (𝑔, 𝑠0, 𝑠1, ...) as
with other methods, namely, with 𝑔 ∼ 𝜌𝒢 , 𝑠0 ∼ 𝜌0(d𝑠0|𝑔) and 𝑠𝑡+1 ∼ 𝑃𝜋(.|𝑠𝑡, 𝑔), and define the
estimate ̂︀𝛿𝜃𝑉 (𝑠, 𝑠′, 𝑔) = 𝜕𝜃𝑣𝜃(𝑠, 𝜙(𝑠)) + 𝜕𝜃𝑣𝜃(𝑠, 𝑔) (𝛾𝑣tar(𝑠

′, 𝑔)𝑣𝜃(𝑠, 𝑔)) (16.1.6)
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similarly to updates of 𝛿-DQN or 𝛿-TD. In that case, we have:

E𝑠,𝑔∼𝜌SG,𝑠′∼𝑃𝜋(.|𝑠,𝑔)

[︁ ̂︀𝛿𝜃𝑉 (𝑠, 𝑠′, 𝑔)]︁ = −𝜕𝜃 1
2
‖𝑉𝜃 − 𝑇𝜋𝛼𝑉tar‖𝜌SG (16.1.7)

where:
𝑇𝜋𝛼𝑉 = 𝛼(𝑠, 𝑔)𝛿𝜙(𝑠) + E𝑠′∼𝑃𝜋(.|𝑠,𝑔) [𝑉 (𝑠′,d𝑔)] . (16.1.8)

This is an unbiased estimate of the TD error with the rescaled reward 𝛼(𝑠, 𝑔)𝛿𝜙(𝑠)(d𝑔) instead
of 𝛿𝜙(𝑠)(d𝑔).

If 𝒮 = 𝒢 and 𝜙 = Id, such a reward rescaling is not an issue. Indeed, in that case,
𝛼(𝑠, 𝑔)𝛿𝑠(d𝑔) = 𝛼(𝑔, 𝑔)𝛿𝑠(d𝑔) as the Dirac measure is nonzero only for 𝑠 = 𝑔. This means that
for every goal 𝑔, the value function for that goal is rescaled by a constant 𝛼(𝑔, 𝑔), and we
learn 𝛼(𝑔, 𝑔)𝑉 (𝑠,d𝑔) instead of 𝑉 (𝑠,d𝑔). This does not change the ranking of state values for
each goal 𝑔, nor the direction of policy improvement for each goal (but it changes the relative
importance of learning different goals 𝑔).

On the contrary, if 𝒮 ≠ 𝒢, for a fixed goal 𝑔, this implicit reward rescaling can favor some
states 𝑠 over others among the set of states 𝑠 achieving this goal (𝜙(𝑠) = 𝑔). For instance,
assume the the agent starts at 𝑠0 and wants to reach 𝑔, and that there are two states 𝑠1, 𝑠2
such that 𝜙(𝑠1) = 𝜙(𝑠2) = 𝑔. Even if 𝑠1 is easier to reach than 𝑠2 from 𝑠0, the policy 𝜋 might
prefer to reach 𝑠2 because its implicitly rescaled reward is higher. Therefore, the algorithm
could converge to non-optimal policies and is not unbiased. It would still learn to reach 𝑔, but
not necessarily in an optimal way.

16.2 Multi-Goal Actor-Critic

We now derive the multi-goal actor-critic update. The standard policy gradient, as presented
in the introduction in Section 1.5 states that if 𝐽(𝜋) is the expected return:

𝐽(𝜋) = E𝑠0∼𝜌0,𝜏∼P(𝜏 |𝑠0,𝜋)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅(𝑠𝑡)

⎤⎦
and 𝜋𝜃 is a parametric policy, then we can estimate the gradient 𝜕𝜃𝐽(𝜋𝜃) via:

𝜕𝜃𝜋𝐽(𝜋𝜃𝜋 ) = E𝑠∼𝜈𝜋,𝑎∼𝜋𝜃𝜋 (.|𝑠),𝜏∼P(𝜏 |𝑠,𝑎) [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠)𝐺(𝜏)] (16.2.1)

where 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, ...) ∼ P(𝜏 |𝑠0) if 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡), 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡), and where 𝜈𝜋(d𝑠) is
the discounted occupancy measure starting from 𝜌0(d𝑠). For finite state space 𝜈𝜋 is defined as:
𝜈𝜋(𝑠) = (1− 𝛾)E𝑠0∼𝜌0

∑︀
𝑡⩾0 𝛾

𝑡P(𝑆𝑡 = 𝑠|𝑠0 = 𝑠).
We want to derive a similar estimate for the multi-goal policy gradient. A possible approach

is to directly apply the policy gradient theorem on the extended state space 𝒮 ×𝒢 as introduced
in Section 13.1.2, with sparse reward 𝑅𝜀(𝑠, 𝑔). This considers the expected return:

𝐽𝜀(𝜋) = E𝑔∼𝑝𝒢 ,𝑠0∼𝑝0(.|𝑔)

⎡⎣∑︁
𝑡⩾0

𝛾𝑡𝑅𝜀(𝑠𝑡, 𝑔)|𝑠0 = 𝑠

⎤⎦
with a sampled goal 𝑔 ∼ 𝜌𝒢(d𝑔) and sampled initial state 𝑠0 ∼ 𝜌0(d𝑠0|𝑔), and subsequent
actions sampled from the policy for 𝑔, which leads to the following gradient:

𝜕𝜃𝜋𝐽𝜀(𝜋𝜃𝜋 ) = E𝑠∼𝜈𝜋(𝑠|𝑔),𝑎∼𝜋𝜃𝜋 (.|𝑠,𝑔),𝜏∼P(𝜏 |𝑠,𝑎,𝑔) [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠, 𝑔)𝑅(𝜏, 𝑔)] (16.2.2)

where 𝜏 = (𝑠0, 𝑎0, 𝑟0, 𝑠1, ...) ∼ P(𝜏 |𝑠0, 𝑔) if 𝑎𝑡 ∼ 𝜋(.|𝑠𝑡, 𝑔), 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡), and where 𝜈𝜋(d𝑠|𝑔)
(introduced in Theorem 13.2)is the discounted occupancy measure following the policy aiming
at 𝑔 𝜋(.|𝑔), and starting from 𝜌0(d𝑠).

This approach has a main limitation: there is no generalization between goals. If a goal 𝑔 is
sampled as a target at the beginning of the trajectory, no learning occurs until 𝑔 is reached
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during that trajectory. Because of the issue of vanishing rewards, the probability of reaching a
goal is almost 0, and no learning is possible.

Hindsight Policy Gradients (Rauber et al., 2019) tackles this issue via importance sampling.
It re-uses trajectories observed while aiming at a goal 𝑔 for learning how to reach a goal 𝑔′, by
reweighting with factors

∏︀
1⩽𝑖⩽𝑡

𝜋(𝑎𝑡|𝑠𝑡,𝑔′)
𝜋(𝑎𝑡|𝑠𝑡,𝑔) . This approach leads to unbiased policy gradient,

and allow some generalization across goals. Still, this approach has two main limitations: first,
as explained by the authors, importance sampling on a long trajectory can lead to large variance
because of the product of probability ratios. Then, the main issue is that it does not solve the
issue of vanishing reward. Indeed, if the new goal 𝑔′ is sampled independently of the observed
trajectory, the probability that the goal corresponds to a state in the trajectory is 0. On the
contrary, if the goal 𝑔′ is taken as one of the achieved goals in the trajectory (which is the
author’s choice in their experiments), the bias occurs as for Hindsight Experience Replay, as
discussed in Chapter 14.

Our goal is therefore to derive an unbiased multi-goal policy gradient algorithm, removing the
issue of vanishing reward. We now derive an estimate of 𝜕𝜃𝐽(𝜋𝜃) for a parametric policy 𝜋𝜃(𝑎|𝑠, 𝑔).
We assume access to transition samples (𝑠, 𝑎, 𝑠′, 𝑔) such that 𝑎 ∼ 𝜋(.|𝑠, 𝑔), 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎)
and 𝑠 is sampled from the goal-dependent discounted visitation frequencies 𝜈𝜋(d𝑠|𝑔) = (1 −
𝛾)
∑︀
𝑡⩾0 𝛾

𝑡𝜌0(d𝑠0|𝑔)(𝑃𝜋)𝑡(d𝑠|𝑠0, 𝑔).
In the introduction (section 1.5), we introduced the actor-critic update in the non-multi-goal

setting: ̂︀𝛿𝜃AC(𝑠, 𝑎, 𝑟, 𝑠
′) := log 𝜋𝜃𝜋 (𝑎|𝑠) (𝑟𝑠 + 𝛾𝑉 𝜋(𝑠′)− 𝑉 𝜋(𝑠)), which is an unbiased policy

gradient estimate. In practice, 𝑉 𝜋 can be estimated with function approximations.
We similarly define the multi-goal actor critic update with infinitely sparse rewards by using

the model 𝑚(𝑠, 𝑔, 𝑔) as an estimate of the values. This leads to

̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔) := 𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔) (𝛾𝑚𝜃𝑀 (𝑠′, 𝑔, 𝑔)−𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔)) (16.2.3)

where 𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔′) is the model of the value density learned in Section 16.1. This update, to-
gether with the one for 𝑚 in Theorem 16.1, make up the 𝛿-Actor-Critic algorithm (Algorithm 15).
We can similarly define a PPO algorithm (Appendix 16.A), used in the experiments.

Intuitively, if 𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔)𝜆(d𝑔) approximates 𝑉 𝜋(𝑠,d𝑔) as a measure, then

E𝑠,𝑎,𝑠′,𝑔
[︁ ̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁

approximates 𝜕𝜃𝐽(𝜋𝜃). This is formalized in the following theorem. Here, we suppose that the
continuous assumption (Assumption 13.1) introduced in Section 13.3 is true. This means that
every probability measure is supposed to be continuous with respect to the Lebesgue measure
𝜆(.). Informally, in that case, we show that three policy gradients are equivalent (up to a
constant, and a reweighting of the goal distribution):

• The gradient of the expected return with infinitely sparse rewards 𝜕𝜃𝐽(𝜋𝜃), defined in
Section 13.3.3.

• The gradient of the expected return with sparse reward 𝜕𝜃𝐽𝜀(𝜋𝜃) when 𝜀→ 0

• The actor critic update E
[︁ ̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁

when 𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔′) accurately approximates
the successor goal measure.

Theorem 16.2. We assume Assumption 13.1 (continuous assumption). Let 𝜋𝜃(𝑎|𝑠, 𝑔) be
a parametrized goal-dependent policy, defined for every 𝜃 ∈ Θ. We assume that for every
𝜃 ∈ Θ, 𝑠 ∈ 𝒮, 𝑔 ∈ 𝒢, 𝑎 ∈ 𝒜, 𝜋𝜃(𝑎|𝑠, 𝑔) > 0. Moreover, we assume 𝜋𝜃(𝑎|𝑠, 𝑔) is a continuous
function of 𝑎, 𝑠, 𝑔, 𝜃, and continuously differentiable with respect to 𝜃.

We define the stochastic actor critic ̂︀𝛿𝜃(𝑛)𝛿-AC for estimate 𝑛 as:

̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔) := 𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔) (𝛾𝑣𝑛(𝑠′, 𝑔)− 𝑣𝑛(𝑠, 𝑔)) (16.2.4)
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Algorithm 15 One-step 𝛿-Actor-Critic

Input: Model 𝑚𝜃𝑀 (𝑠, 𝑔); policy 𝜋𝜃; goal function 𝜙; 𝑇 the maximum trajectory length
Get a goal 𝑔 and an initial state 𝑠0 from the environment
for 0 ⩽ 𝑡 ⩽ 𝑇 steps do

Sample 𝑎𝑡 ∼ 𝜋(𝑎|𝑠𝑡, 𝑔)
Execute action 𝑎𝑡 and observe the next state 𝑠𝑡+1

Sample an independent goal 𝑔′ ∼ 𝜌𝒢(d𝑔′)̂︀𝛿𝜃𝛿-TD := 𝜕𝜃𝑚𝜃𝑀 (𝑠𝑡, 𝑔, 𝜙(𝑠𝑡)) + 𝜕𝜃𝑚𝜃𝑀 (𝑠𝑡, 𝑔, 𝑔
′) (𝛾𝑚𝜃𝑀 (𝑠𝑡+1, 𝑔, 𝑔

′)−𝑚𝜃𝑀 (𝑠𝑡, 𝑔, 𝑔
′))̂︀𝛿𝜃𝛿-AC = 𝛾𝑡 × 𝜕𝜃 log 𝜋𝜃𝜋 (𝑎𝑡|𝑠𝑡, 𝑔) (𝛾𝑚(𝑠𝑡+1, 𝑔, 𝑔)−𝑚(𝑠𝑡, 𝑔, 𝑔))

𝜃𝑀 ← 𝜃𝑀 + 𝜂𝑀 ̂︀𝛿𝜃𝛿-TD

𝜃𝜋 ← 𝜃𝜋 + 𝜂𝜋 ̂︀𝛿𝜃𝛿-AC

end for

We define 𝜌(d𝑔) := 1
𝑐𝑝

2
𝒢(𝑔)𝜆(d𝑔) with 𝑐 :=

∫︀
𝑔
𝑝2𝒢(𝑔)𝜆(d𝑔). We assume access to samples

𝑔 ∼ 𝜌(d𝑔), 𝑠0 ∼ 𝜌0(d𝑠|𝑔) = 𝑝0(𝑠0|𝑔)𝜆(d𝑠0), 𝑠 ∼ 𝜈𝜋𝜃 ( 𝑠|𝑠0, 𝑔), 𝑎 ∼ 𝜋(𝑎|𝑠, 𝑔) and 𝑠′ ∼ 𝑃 (d𝑠′|𝑠, 𝑎).
Let (𝑣𝑛(𝑠, 𝑔))𝑛⩾0 be a sequence of densities, such that 𝜆(d𝑠)𝑣𝑛(𝑠, 𝑔)𝜌(d𝑔) converges weakly to
𝜆(d𝑠)𝑉 𝜋𝜃 (𝑠,d𝑔). Then, we have:

lim
𝑛→∞

E𝑔∼𝜌,𝑠∼𝜈𝜋(.|𝑔),𝑎∼𝜋𝜃(.|𝑠,𝑔),𝑠′∼𝑃 (.|𝑠,𝑎)

[︂ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔)

]︂
=

1− 𝛾
𝑐

𝜕𝜃𝐽(𝜋𝜃) (16.2.5)

Moreover, we have:

lim
𝜀→0

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃) = 𝜕𝜃𝐽(𝜋𝜃) (16.2.6)

Proof. We first compute 𝜕𝜃𝐽(𝜋𝜃). We have:

𝐽(𝜋𝜃) =

∫︁
𝑠0,𝑔

𝑉 𝜋𝜃 (𝑠0, d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜆(d𝑠0) (16.2.7)

We know that 𝑉 𝜋(𝑠,d𝑔) = 𝛿𝜙(𝑠)(d𝑔) + �̃�𝜋(𝑠, 𝑔, 𝑔)𝜆(d𝑔). We define for simplicity 𝑣𝜋(𝑠, 𝑔) = �̃�𝜋(𝑠, 𝑔, 𝑔).
Moreover, we know, by taking 𝑔′ = 𝑔 in Equation (13.3.3) in Lemma 13.4 that for every (𝑠, 𝑔), we have:

𝑣𝜋𝜃 (𝑠, 𝑔) = 𝛾

∫︁
𝑎
𝜆(d𝑎)𝜋(𝑎|𝑠, 𝑔)

(︂
𝑝(𝑔|𝑠, 𝑎) +

∫︁
𝑠′
𝜆(d𝑠′)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)

)︂
(16.2.8)

We define 𝐹 (𝑠, 𝑔, 𝜃) = 𝛾
∫︀
𝑎 𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎). The function 𝐹𝜃 is continuous in 𝑠 and 𝑔 and continu-

ously differentiable in 𝜃, because 𝑝 is and 𝜋𝜃 are continuous, 𝜋𝜃 is continuously differentiable, and 𝒜 is
compact. From the proof of Equation (13.3.3) in Lemma 13.4, we know that 𝐹 (𝑠, 𝑔, 𝜃) is the density of
𝛾
∫︀
𝑎,𝑠′ 𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠

′|𝑠, 𝑎)𝛿𝜙(𝑠′)(d𝑔) with respect to the Lebesgue measure 𝜆(d𝑔). This remark will be used
later in the computation. We now have:

𝑣𝜋𝜃 (𝑠, 𝑔) = 𝐹 (𝑠, 𝑔, 𝜃) + 𝛾

∫︁
𝑎,𝑠′

𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)𝜆(d𝑎, d𝑠′) (16.2.9)

Therefore:

𝑣𝜋𝜃 (𝑠, 𝑔) = 𝐹 (𝑠, 𝑔, 𝜃) +
∑︁
𝑘⩾1

𝛾𝑘
∫︁
𝑎0,𝑠1,...

𝜆(d𝑎0,d𝑠1, ..., d𝑠𝑘)

(︃
𝑘−1∏︁
𝑖=0

𝜋𝜃(𝑎𝑖|𝑠𝑖, 𝑔)𝑝(𝑠𝑖+1|𝑠𝑖, 𝑎𝑖)
)︃
𝐹 (𝑠𝑘, 𝑔, 𝜃)

(16.2.10)

because it is a fixed point of 𝑣𝜋 equation, and is the only fixed point which is continuous and bounded,
because the space is compact, and 𝜋𝜃, 𝑝 are continuous an bounded.

Equation (16.2.10) can also be written:

𝑣𝜋𝜃 (𝑠, 𝑔) =
1

1− 𝛾

∫︁
𝑠′
𝜈𝜋𝜃 (d𝑠′|𝑠, 𝑔)𝐹 (𝑠′, 𝑔, 𝜃) (16.2.11)

Because 𝐹 (𝑠′, 𝑔, 𝜃) is continuously differentiable in 𝜃 and the support of 𝜈𝜋 is compact, 𝑣𝜋𝜃 (𝑠, 𝑔) is
differentiable. We will now now derive a fixed point equation on 𝜕𝜃𝑣

𝜋𝜃 . We differentiate equation (16.2.9)
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and we get:

𝜕𝜃𝑣
𝜋𝜃 (𝑠, 𝑔) = 𝜕𝜃𝐹 (𝑠, 𝑔, 𝜃) + 𝛾

∫︁
𝑎,𝑠

𝜆(d𝑎, d𝑠)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)+ (16.2.12)

+ 𝛾

∫︁
𝑎,𝑠

𝜆(d𝑎, d𝑠)𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝑣𝜋𝜃 (𝑠′, 𝑔) (16.2.13)

We define 𝐺(𝑠, 𝑔, 𝜃) := 𝜕𝜃𝐹 (𝑠, 𝑔, 𝜃) + 𝛾
∫︀
𝑎,𝑠′ 𝜆(d𝑎,d𝑠

′)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔). We have:

𝜕𝜃𝑣
𝜋𝜃 (𝑠, 𝑔) = 𝐺(𝑠, 𝑔, 𝜃) + 𝛾

∫︁
𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝑣𝜋𝜃 (𝑠′, 𝑔) (16.2.14)

Similarly to the derivation of 𝑣𝜋 from its fixed point equation (from (16.2.9) to (16.2.10)):

𝜕𝜃𝑣
𝜋𝜃 (𝑠, 𝑔) = 𝐺(𝑠, 𝑔, 𝜃) +

∑︁
𝑘⩾1

𝛾𝑘
∫︁
𝑎0,𝑠1,...

𝜆(d𝑎0, d𝑠1, ..., d𝑠𝑘)

(︃
𝑘−1∏︁
𝑖=0

𝜋𝜃(𝑎𝑖|𝑠𝑖, 𝑔)𝑝(𝑠𝑖+1|𝑠𝑖, 𝑎𝑖)
)︃
𝐺(𝑠𝑘, 𝑔, 𝜃)

(16.2.15)

=
1

1− 𝛾

∫︁
𝑠′
𝜈𝜋𝜃 (d𝑠′|𝑠, 𝑔)𝐺(𝑠′, 𝑔, 𝜃) (16.2.16)

We now compute 𝜕𝜃𝐽(𝜋𝜃). We have:

𝜕𝜃𝐽(𝜃) = 𝜕𝜃

(︂∫︁
𝑠0,𝑔

𝜆(d𝑠0)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝑉 𝜋𝜃 (𝑠0,d𝑔)
)︂

= 𝜕𝜃

(︂∫︁
𝑠0,𝑔

𝜆(d𝑠0)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)
(︀
𝛿𝜙(𝑠0)(d𝑔) + 𝑣𝜋𝜃 (𝑠0, 𝑔)𝜆(d𝑔)

)︀)︂
= 𝜕𝜃

(︂∫︁
𝑠0,𝑔

𝜆(d𝑠0, d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝑣𝜋𝜃 (𝑠0, 𝑔)
)︂

=

∫︁
𝑠0,𝑔

𝜆(d𝑠0, d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜕𝜃𝑣𝜋𝜃 (𝑠0, 𝑔)

=
1

1− 𝛾

∫︁
𝑠0,𝑠,𝑔

𝜆(d𝑠0,d𝑔)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜈𝜋𝜃 (d𝑠|𝑠0, 𝑔)𝐺(𝑠, 𝑔, 𝜃) (16.2.17)

We now show that:

𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) = 𝛾

∫︁
𝑠′,𝑎

𝑉 (𝑠′, d𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎) (16.2.18)

While this result might seem to come out of nowhere, remember that 𝐹 (𝑠, 𝑔, 𝜃) was derived above as the
measure density of 𝛾

∫︀
𝑠′,𝑎 𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠

′|𝑠, 𝑔)𝛿𝜙(𝑠′)(d𝑔) with respect to Lebesgue measure. With the following
informal computation, we have:

𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔)

= 𝜆(d𝑔)𝜕𝜃
1

𝜆(d𝑔)

∫︁
𝑠′,𝑎

𝜆(d𝑠′, d𝑎)𝛾𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝛿𝜙(𝑠′)(d𝑔) + 𝛾

∫︁
𝑠′,𝑎

𝜆(d𝑠′, d𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)

=

∫︁
𝑠′,𝑎

𝜆(d𝑠′, d𝑎)𝛾𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠)(d𝑔) + 𝑣𝜋𝜃 (𝑠′, 𝑔)𝜆(d𝑔)

)︀
=

∫︁
𝑠′,𝑎

𝜆(d𝑠′, d𝑎)𝛾𝑉 𝜋𝜃 (𝑠′,d𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)

This derivation is informal because we differentiated through a density: we use 𝜆(d𝑔)𝜕𝜃 1
𝜆(d𝑔)

= 𝜕𝜃. We
now derive the result rigorously. Let 𝑓(𝑔) be a continuous test function. We have:∫︁

𝑔
𝑓(𝑔)𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) =

=

∫︁
𝑔
𝜆(d𝑔)𝑓(𝑔)

(︂
𝛾

∫︁
𝑎
𝜆(d𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎) + 𝛾

∫︁
𝑎,𝑠′

𝜆(d𝑠′, d𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝜋𝜃 (𝑠′, 𝑔)
)︂

We consider the first part. The following is the reversed derivation of 𝑝 in Equations (13.3.26)-(13.3.29).We
have: ∫︁

𝑔
𝜆(d𝑔)𝑓(𝑔)

(︂
𝛾

∫︁
𝑎
𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎)

)︂
= 𝛾

∫︁
𝑔,𝑎

𝜆(d𝑔,d𝑎)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑔|𝑠, 𝑎)

= 𝛾

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎,d𝑠′)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝛿𝜙(𝑠′)(d𝑔)
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Therefore:∫︁
𝑔
𝑓(𝑔)𝐺(𝑠, 𝑔, 𝜃)𝜆(d𝑔) = 𝛾

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎, d𝑠′)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
(︀
𝛿𝜙(𝑠′)(d𝑔) + 𝑣𝜋𝜃 (𝑠′, 𝑔)𝜆(d𝑔)

)︀
= 𝛾

∫︁
𝑔,𝑎,𝑠′

𝜆(d𝑎, d𝑠′)𝑓(𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑉 𝜋𝜃 (𝑠′, d𝑔)

This establishes equation (16.2.18). Finally, from (16.2.17) and (16.2.18), we have:

𝜕𝜃𝐽(𝜋𝜃) =
1

1− 𝛾

∫︁
𝑔,𝑠0,𝑠,𝑎,𝑠′

𝜆(d𝑠0)𝛾𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜈𝜋𝜃 (d𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑉 𝜋𝜃 (𝑠′,d𝑔)

We now show that Then, we have: lim𝑛→∞ E
[︁ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁
= 1−𝛾

𝑐
𝜕𝜃𝐽(𝜋𝜃) and lim𝜀→0

1
𝜆(𝜀)

𝜕𝜃𝐽𝜀(𝜋𝜃) =

𝜕𝜃𝐽(𝜋𝜃).
We first compute 𝜕𝜃𝐽𝜀(𝜋𝜃). We apply the policy gradient theorem (Sutton and Barto, 2018) to the

augmented state augmented (non-multi goal) environment 𝒮 = 𝒮 × 𝒢, and we have, for any baseline function
𝑏(𝑠) with 𝑠 ∈ 𝒮:

𝜕𝜃𝐽𝜀(𝜋𝜃) (16.2.19)

=
1

1− 𝛾

∫︁
𝑠0,𝑠,𝑎,𝑠′

𝜆(d𝑎)𝜌0(𝑠0)𝜈
𝜋𝜃 (d𝑠|𝑠0)𝑃 (d𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠)

(︀
𝑅𝜀(𝑠) + 𝛾𝑉 𝜋𝜀 (𝑠′)− 𝑏(𝑠)

)︀
(16.2.20)

=
1

1− 𝛾

∫︁
𝑔,𝑠0,𝑠,𝑎,𝑠′

𝜆(d𝑎)𝜌𝒢(d𝑔)𝜌0(d𝑠0|𝑔)𝜈𝜋𝜃 (d𝑠|𝑠0, 𝑔)𝑃 (d𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)
(︀
𝑅𝜀(𝑠, 𝑔) + 𝛾𝑉 𝜋𝜀 (𝑠′, 𝑔)− 𝑏(𝑠, 𝑔)

)︀
(16.2.21)

with the change of variable 𝑠 = (𝑠, 𝑔), 𝑠′ = (𝑠′, 𝑔), 𝑠0 = (𝑠0, 𝑔). We use the baseline 𝑏(𝑠, 𝑔) = 𝑅𝜀(𝑠, 𝑔), and we
have:

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃) =

1

1− 𝛾

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠0,d𝑎, d𝑔)𝑝𝒢(𝑔)𝑝(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)
(︂
𝛾𝑉𝜀(𝑠′, 𝑔)

𝜆(𝜀)

)︂
(16.2.22)

We now compute E
[︁ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁
. We have:

E
[︁ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁

(16.2.23)

=

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑔,d𝑠0,d𝑠
′, d𝑎)

1

𝑐
𝑝𝒢(𝑔)

2𝑝(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝜋𝜃(𝑎|𝑠, 𝑔)𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔)(𝛾𝑣𝑛(𝑠′, 𝑔)− 𝑣𝑛(𝑠, 𝑔))

(16.2.24)

=

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑔,d𝑠0, d𝑠
′, d𝑎)

1

𝑐
𝑝𝒢(𝑔)

2𝑝(𝑠0|𝑔)𝜈𝜋(𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)(𝛾𝑣𝑛(𝑠′, 𝑔)− 𝑣𝑛(𝑠, 𝑔)) (16.2.25)

We know that for every baseline function 𝑏(𝑠, 𝑔):∫︁
𝑎
𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑏(𝑠, 𝑔) = 𝑏(𝑠, 𝑔)𝜕𝜃

∫︁
𝑎
𝜋𝜃(𝑎|𝑠, 𝑔) = 0 (16.2.26)

We define 𝑏(𝑠, 𝑔) = 𝑣𝑛(𝑠, 𝑔), and we have:

E
[︁ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁
= 𝛾

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑔,d𝑠0, d𝑠
′, d𝑎)

1

𝑐
𝑝𝒢(𝑔)

2𝑝0(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝑣𝑛(𝑠′, 𝑔)

(16.2.27)

We know from Lemma 13.4 that 𝜈𝜋(d𝑠|𝑠0, 𝑔) = (1− 𝛾)𝛿𝑠0 (d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠) where 𝑞𝜋 is continuous,
bounded, and with compact support as a density. Therefore, for any goal 𝑔, if we take the expectation with
respect to 𝑠0 ∼ 𝑝0(𝑠0|𝑔):∫︁

𝑠0

𝑝0(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔) =
∫︁
𝑠0

(1− 𝛾)𝑝0(𝑠0|𝑔)𝛿𝑠0 (d𝑠) + 𝑞𝜋(𝑠|𝑠0, 𝑔)𝜆(d𝑠) (16.2.28)

=

(︂
(1− 𝛾)𝑝0(𝑠|𝑔) +

∫︁
𝑠0

𝑝0(𝑠0|𝑔)𝑞𝜋(𝑠|𝑠0, 𝑔)
)︂
𝜆(d𝑠) (16.2.29)

= 𝑞𝜋(𝑠|𝑔)𝜆(d𝑠) (16.2.30)

where 𝑞𝜋 is continuous, bounded and with compact support as a density. Moreover, 𝑝𝒢 and 𝑝0(𝑠0|𝑔) are
continuous bounded functions. Therefore:

E
[︁ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁
= 𝛾

∫︁
𝑠′,𝑔

𝜆(d𝑠′, d𝑔)𝑣𝑛(𝑠
′, 𝑔)

1

𝑐
𝑝𝒢(𝑔)

2

∫︁
𝑠,𝑎

𝜆(d𝑠,d𝑎)𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔) (16.2.31)
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and similarly:

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃) =

𝛾

1− 𝛾

∫︁
𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠,d𝑎, d𝑠′, d𝑔)𝑝𝒢(𝑔)𝑞(𝑠|𝑔)𝜕𝜃𝜋(𝑎|𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)
𝑉𝜀(𝑠′, 𝑔)

𝜆(𝜀)
(16.2.32)

=
𝛾

1− 𝛾

∫︁
𝑠′,𝑔

𝜆(d𝑠′, d𝑔)
𝑉𝜀(𝑠′, 𝑔)

𝜆(𝜀)
𝑝𝒢(𝑔)

∫︁
𝑠,𝑎

𝜆(d𝑠,d𝑎)𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔) (16.2.33)

We know that the two measures on 𝐾𝒮 × 𝒢 defined as 𝜆(d𝑠,d𝑔)
𝑉𝜀(𝑠,𝑔)
𝜆(𝜀)

and 𝜆(d𝑠)𝑣𝑛(𝑠, 𝑔)𝜌(d𝑔) =

𝜆(d𝑠, d𝑔)𝑣𝑛(𝑠, 𝑔)𝑝𝒢(𝑔) converges weakly to 𝜆(d𝑠)𝑉 𝜋𝜃 (𝑠, d𝑔). Moreover, (𝑠′, 𝑔)→
∫︀
𝑠,𝑎 𝑞(𝑠, 𝑔)𝑝(𝑠

′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔)
is continuous and bounded because 𝑞, 𝑝 and 𝜕𝜃𝜋𝜃 are continuous, bounded, and the supports are compact.
Therefore, from equation (16.2.31):

E
[︁ ̂︀𝛿𝜃(𝑛)𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔)
]︁
→𝑛→∞

𝛾

𝑐

∫︁
𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠, d𝑠′, d𝑎)𝑝𝒢(𝑔)𝑉
𝜋𝜃 (𝑠′,d𝑔)𝑞(𝑠, 𝑔)𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔) (16.2.34)

=
𝛾

𝑐

∫︁
𝑠0,𝑠,𝑎,𝑠′,𝑔

𝜆(d𝑠0, d𝑠, d𝑎,d𝑠
′)𝑝𝒢(𝑔)𝑝0(𝑠0|𝑔)𝜈𝜋(d𝑠|𝑠0, 𝑔)𝑉 𝜋𝜃 (𝑠′, d𝑔)𝛾𝑝(𝑠′|𝑠, 𝑎)𝜕𝜃𝜋𝜃(𝑎|𝑠, 𝑔) (16.2.35)

=
1− 𝛾
𝑐

𝜕𝜃𝐽(𝜋𝜃) (16.2.36)

and from equation (16.2.33)

1

𝜆(𝜀)
𝜕𝜃𝐽𝜀(𝜋𝜃)→𝜀→0 𝜕𝜃𝐽(𝜋𝜃) (16.2.37)

This concludes the proof.

16.3 Experiments

In this section, we experiment the introduced method 𝛿-DQN introduced in Chapter 15, and
the multi-goal actor-critic method introduced in this chapter. We consider two settings. First,
the Torus environment, then the FetchReach robotic arm environment. More experimental
details are in Appendix 16.A.

The Torus environment. We first define the Torus(𝑛) environment, which is a continuous
version of the flipping coin environment introduced in (Andrychowicz et al., 2017). The state
space is the 𝑛-th dimensional torus, represented as 𝒮 = [0, 1)𝑛, and can be obtained from
the 𝑛-dimensional hypercube by gluing the opposite faces together. The action space is 𝒜 =
{1, . . . , 𝑛}×{−𝛼, 𝛼} and action 𝑎 = (𝑖, 𝑢) in state 𝑠 moves the position on the axis 𝑖 of a quantity
𝑢, then the environment adds a Gaussian noise. Formally 𝑠′ ∼

(︀
(𝑠+ 𝑢.𝑒𝑖 +𝒩 (0, 𝜎2)) mod 1

)︀
,

where (𝑒𝑗)1⩽𝑗⩽𝑛 is the canonical basis (𝑒𝑖)𝑘 = 1𝑖=𝑘. We consider the environment in dimensions
𝑛 = 4 and 𝑛 = 6. We also consider the modified environment with the freeze action described
in Section 14.2. For every environment, we observe trajectories of length 200, and the reported
metric is the rescaled negative L1 distance to the goal at the end of trajectory − 1

𝑛‖𝑠 − 𝑔‖1.
The experimental details are in Appendix 16.A.

We compare UVFA, HER, 𝛿-DQN, and 𝛿-PPO (defined in Appendix 16.A based on 𝛿-AC).
Each algorithm fails in some environment: additional experiments in the Appendix show that
𝛿-DQN and 𝛿-PPO are both failing to learn when the dimension of the torus increases, while
HER is still able to learn. This is discussed in Section 16.4. While UVFA, HER and 𝛿-DQN are
similar algorithms and can be compared as actor-critic methods handle the trajectory samples
in a different way from 𝑄-learning methods. Still, we observe that 𝛿-PPO learns successfully in
the same environments as 𝛿-DQN, and also failing when 𝛿-DQN does.

The FetchReach environment. The FetchReach environment (Plappert et al., 2018) is
a robotic arm environment in which the objective is for the extremity of the arm to reach a
given 3D position. The environment is deterministic, so HER is expected to perform well. Here,
all methods learn successfully. We also experimented 𝛿-DQN and 𝛿-PPO on more complex
environments of the same robotic suite, such as FetchPush, but both methods fail in this setting,
while HER was successful.
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Figure 16.1: We compare UVFA, HER, 𝛿-DQN in toy environments. We observe different
regimes: with a highly stochastic environment (Torus with freeze action), HER is unable to
learn because of its bias, whereas UVFA and 𝛿-DQN are. When the state dimension becomes
too large (Torus(6)), UVFA is unable to learn because of the vanishing reward issue. In
environments in which HER is able to learn, it is the most efficient method, and 𝛿-DQN is
always performing better than UVFA.

16.4 Limitations and Future Work

The algorithms using infinitely sparse rewards always perform better than UVFA, and perform
better than HER in environments designed to exhibit the HER bias issue. But they do not
perform as well as HER in some standard environments, and are unable to learn at all in more
complex environments such as FetchPush. We discuss two technical limitations of 𝛿-DQN and
𝛿-Actor-Critic.

The first issue is the function approximation. Learning the models

𝑄𝜃(𝑠, 𝑎,d𝑔) = 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌(d𝑔)

of 𝑄* and
𝑀𝜋
𝜃 (𝑠, 𝑔1,d𝑔2) = 𝑚𝜃(𝑠, 𝑔1, 𝑔2)𝜌(d𝑔2)

of 𝑀𝜋 requires approximating a Dirac distribution (when 𝑔2 = 𝜙(𝑠)) with a continuous density.
The theorems justify this, but in practice the functions 𝑚𝜃 and 𝑞𝜃 have to reach multiple orders
of magnitude (high values close to the goal, low everywhere else), and the values need to be
accurate in these two regimes. Representing multiple orders of magnitude in neural networks
may require a well-suited family of parametric functions.

A second issue is variance. The Dirac rewards remove the infinite variance of vanishing
rewards in UVFA when 𝜀→ 0. But the variance of the remaining term can be high. Consider
the tabular case (15.3.2)–(15.3.3): 𝛿-DQN learns significantly faster than UVFA on the diagonal
𝑄(𝑠, 𝑎, 𝑔) when 𝑔 = 𝑠, thanks to the Diracs. But this does not change the way the reward is
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propagated to other states, due to the independent sampling of 𝑔 in (15.3.3). Selecting goals 𝑔
more correlated to the state 𝑠 as in HER could also be helpful, but this is not obvious to do
without re-introducing HER-style bias.





Appendix

16.A Experiments Details
In this section, we present the experiment details of Section 16.3. Every experiment was performed on a single
GPU.

The Torus(n) environment The state space of the Torus(𝑛) environment is the 𝑛-th dimensional
torus, 𝒮 = [0, 1)𝑛, and can be obtained from the 𝑛-dimensional hypercube by gluing the opposite faces together.
If the current state is 𝑠 = (𝑠1, ..., 𝑠𝑛), we define the observation of the agent as

(cos(2𝜋𝑠1), ..., cos(2𝜋𝑠𝑛), sin(2𝜋𝑠1), ..., sin(2𝜋𝑠𝑛)) ∈ [−1, 1]2𝑛.

We use this representation in order to remove the discontinuity of the representation [0, 1)𝑛. This representation
contains all the information of the state 𝑠 and the environment is still fully observable (and not partially
observable). The action space is𝒜 = {1, . . . , 𝑛}×{−𝛼, 𝛼} and action 𝑎 = (𝑖, 𝑢) in state 𝑠moves the position on the
axis 𝑖 of a quantity 𝑢, then the environment adds a Gaussian noise. Formally 𝑠′ ∼

(︀
(𝑠+ 𝑢.𝑒𝑖 +𝒩 (0, 𝜎2)) mod 1

)︀
,

where (𝑒𝑗)1⩽𝑗⩽𝑛 is the canonical basis (𝑒𝑖)𝑘 = 1𝑖=𝑘. In practice, we take 𝛼 = 0.1, and 𝜎 = 0.1
𝑛

. The reward
is 𝑅𝜀(𝑠, 𝑔) = 1‖𝑠−𝑔‖⩽𝜀 where ‖.‖ is the rescaled L1 distance in the Torus: ‖𝑠 − 𝑔‖ = 1

𝑛

∑︀𝑛
𝑖=1 min((𝑠𝑖 − 𝑔𝑖)

mod 1, |((𝑠𝑖 − 𝑔𝑖) mod 1)− 1|). In practice, we use 𝜀 = 0.05. At the beginning of an episode, we sample a goal
uniformly in the environment, then we observe trajectories of length 200. We set 𝛾 = .995.

FetchReach FetchReach is a standard environment from Plappert et al. (2018). The objective is to reach
a goal position in 3 dimension with the end of the robotic arm. The observation space 𝒮 is of dimension 10 and
contains positions and velocities, such that the environment is Markov, fully observable, and deterministic. The
action space 𝒜 is continuous and of dimension 4. The goal space 𝒢 is of dimension 3, and the goal represent the
position of the end of the robotic arm. Trajectories are of length 50.

Q-learning experiments Here we describe experiments with UVFA, HER and 𝛿-DQN, which have
similar structure. For every algorithm, we use the same neural network to learn 𝑄𝜃(𝑠, 𝑎, 𝑔) or 𝑞𝜃(𝑠, 𝑎, 𝑔). Similarly
to DDPG (Lillicrap et al., 2016), if the action space 𝒜 is continuous, we additionally learn a deterministic policy
𝜋𝜃 : 𝒮 × 𝒢 → 𝒜. We use a dueling architecture (Wang et al., 2015): we learn a value network 𝑣𝜃(𝑠, 𝑔) and an
advantage network adv𝜃(𝑠, 𝑎, 𝑔). We then define 𝑞𝜃(𝑠, 𝑎, 𝑔) = 𝑣𝜃(𝑠, 𝑔) +̃︂adv𝜃(𝑠, 𝑎, 𝑔), where ̃︂adv𝜃(𝑠, 𝑎, 𝑔) is the
rescaled advantage, and is defined as ̃︂adv𝜃(𝑠, 𝑎, 𝑔) = adv𝜃(𝑠, 𝑎, 𝑔)− 1

|𝒜|
∑︀
𝑎′∈𝒜 adv𝜃(𝑠, 𝑎

′, 𝑔) if 𝒜 is finite, and̃︂adv𝜃(𝑠, 𝑎, 𝑔) = adv𝜃(𝑠, 𝑎, 𝑔)− adv𝜃(𝑠, 𝜋(𝑠, 𝑔), 𝑔) if 𝒜 is continuous. The networks for 𝑣𝜃, 𝑎𝜃 and 𝜋𝜃 are 3-hidden
layers MLP of width 256 and ReLU activations. The inputs of 𝑣𝜃 and 𝜋𝜃 are the concatenation of 𝑠 and 𝑔.
If 𝒜 is continuous, the input of adv𝜃 is the concatenation of 𝑠, 𝑎, 𝑔. If 𝒜 is discrete, the input of adv𝜃 is the
concatenation of 𝑠 and 𝑔, and its output is of dimension |𝒜|, every dimension corresponding to an action.

Most hypereparameters are shared among the three methods: we observe batches of trajectories of size 16
for the Torus experiments, and of size 2 for the FetchReach environment. At every epoch, we observe a batch of
trajectories and store it in a memory buffer of size 106 transitions. We use an 𝜀-greedy exploration strategy,
with 𝜀 = 0.2. At every epoch, we sample 100 batches from the replay buffer for the Torus experiments, and 50
for the FetchReach environment. For HER, we use the future sampling strategy for goals: when sampling a
transition (𝑠, 𝑎, 𝑠′, 𝑔), with probability 0.2 we define 𝑔′ = 𝑔, and with probability 0.8 we sample 𝑔′ uniformly in
the future of 𝑠. For 𝛿-DQN in the Torus environment, we sample independent goals with 𝜌𝒢 uniform distribution
in the Torus. In FetchReach, we do not assume we have access to the goal sampling distribution. Therefore, we
re-sample independent goals from the memory buffer. For every method, observations and goals are normalized.
We use a target network with parameter 𝜃tar and update the target as 𝜃tar ← (1− 𝛼)𝜃tar + 𝛼𝜃 with 𝛼 = 0.05
after every epoch. Every model is trained with the Adam optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999.

For every method and environment, the most sensitive hyperparameters were selected with a grid-search.
For HER, UVFA and 𝛿-DQN, we selected the learning rate of the optimizer from a range {1𝑒− 6, 3𝑒− 6, 1𝑒−
5, 3𝑒 − 5, 1𝑒 − 4, 3𝑒 − 4, 1𝑒 − 3}. For HER and UVFA, we additionally selected 𝑅 a reward scaling factor,
in {1𝑒 − 2, 1𝑒 − 1, 1, 10, 100, 1000, 1𝑒4}. For 𝛿-DQN, we also selected a parameter 𝑐𝛿 corresponding to the
scaling of the reward: the scaled infinitely sparse reward is 𝑅(𝑠, d𝑔) = 𝑐𝛿𝛿𝜙(𝑠)(d𝑔). We experimented all the
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possible hyperparameters of this grid separately on every environment on a single run and selected the best
hyperparameters. The values in Figure 16.1 are the mean performance evaluated with 5 different random seeds,
and the confidence intervals represent the standard deviation of the reported metric across the 5 independent
runs. In practice, the reward scaling factor for UVFA is 10 for all the Torus environments and 100 for FetchReach.
The reward factor is 1 for HER for all the Torus environments and 10 for FetchReach. The learning rate for
UVFA is 1𝑒− 4 for all the Torus environments and 1𝑒− 3 for FetchReach. The learning rate for HER is 3𝑒− 4
for all the Torus environments and 1𝑒 − 3 for HER. For 𝛿-DQN, the learning rate is 1𝑒 − 5 for all the Torus
environments, and 1𝑒− 4 for the FetchReach environment. The reward scaling coefficient 𝑐𝛿 is 1𝑒− 2 for every
environments.

𝛿-PPO experiments The 𝛿-PPO is defined from 𝛿-AC similarly to PPO (Schulman et al., 2017) from
actor critic methods. We learn the model 𝑚𝜃(𝑠, 𝑔, 𝑔′) of the density of 𝑀𝜋(𝑠, 𝑔, d𝑔′) with respect to 𝜌𝒢 , and
𝜋𝜃(𝑎|𝑠, 𝑔) a parametric policy. We used a shared architecture: we define ℎ𝜃(𝑠, 𝑔, 𝑔′) a network computing a
hidden representation of dimension 𝐻. Then, we define two linear layers 𝐿𝑚𝜃 and 𝐿𝜋𝜃, and define 𝑚𝜃(𝑠, 𝑔, 𝑔′) =
𝐿𝑚𝜃 (ℎ𝜃(𝑠, 𝑔, 𝑔

′)) and 𝜋𝜃(𝑎|𝑠, 𝑔) = 𝐿𝜋𝜃 (ℎ𝜃(𝑠, 𝑔, 𝑔
′)). In practice, ℎ𝜃 is a 2-hidden layers MLP with ReLU activations

(except at the last layer), with width 𝐻 = 256 for the internal and output layers.
A step of 𝛿-PPO is defined as follow. We first gather a buffer of trajectories with the current policy 𝜋𝜃.

Then, we define 𝜃′ := 𝜃. For every transition (𝑠, 𝑎, 𝑠′, 𝑔) in the buffer and every epoch 𝑒 ⩽ 𝐸, we sample an
independent goal 𝑔′ and compute:̂︀𝛿𝜃𝑀 ← ̂︀𝛿𝜃𝛿-TD(𝑠, 𝑎, 𝑠′, 𝑔, 𝑔′) (16.A.1)

adv← 𝛾𝑚𝜃𝑀 (𝑠′, 𝑔, 𝑔)−𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔) (16.A.2)

𝑟(𝜃′)←
𝜋𝜃′ (𝑎|𝑠, 𝑔)
𝜋𝜃(𝑎|𝑠, 𝑔)

(16.A.3)

𝑟(𝜃′)← clip(𝑟, 1− 𝑢, 1 + 𝑢) (16.A.4)̂︀𝛿𝜃𝜋 ← 𝜕𝜃′
(︀
min

(︀
adv × 𝑟(𝜃′), adv × 𝑟(𝜃′)

)︀)︀
(16.A.5)̂︀𝛿𝜃 ← ̂︀𝛿𝜃𝜋 + 𝑐𝑀 × ̂︀𝛿𝜃𝑀 (16.A.6)

where 𝑐𝑀 allow to scale the two updates. Then we use ̂︀𝛿𝜃 and with Adam optimizer to obtain a new value for 𝜃′.
We did not use an entropy regularizer aw we observed that the diversity of actions was not an issue in practice.

For the Torus environment, the independent goals 𝑔′ are sampled from 𝜌𝒢 the uniform distribution of goals
in the environment. For FetchReach, we do not assume we know 𝜌𝒢 and sample goals from the buffer.

In practice, at every step of the 𝛿-PPO algorithm we observe a batch of 2 trajectories for Torus(4) and
Torus(6), 100 for the Torus(4) with the freeze action 𝑎*, and 200 for FetchReach. Three hyperparameters were
selected independently for every environment via a grid search: 𝐸 the number of epochs per 𝛿-PPO step, the
learning rate of Adam optimizer, and the coefficient 𝑐𝑀 . We performed a grid search with a single run per
tuple of parameters. Then, the reported results in Figure 16.1 are averaged over 5 different random seeds with
the selected hyperparameters. The number of epoch 𝐸 per step was selected as lowest number which achieved
close-to-optimal performance across the range {1, 2, 5, 10, 20, 50, 100}. In practice, 𝐸 = 20 in the Torus(4) and
Torus(6) environments, 𝐸 = 10 in the Torus(4) with the freeze action 𝑎*, and 𝐸 = 50 for FetchReach. The
learning rate was selected in the set {1𝑒− 6, 3𝑒− 6, 1𝑒− 5, 3𝑒− 5, 1𝑒− 4, 3𝑒− 4, 1𝑒− 3}, and in practice is 1𝑒− 4
for every environment. The coefficient 𝑐𝑀 was selected in {1𝑒− 4, 1𝑒− 3, 1𝑒− 2, 1𝑒− 1, 1𝑒0, 1𝑒1, 1𝑒2, 1𝑒3} and
in practice is 1𝑒− 3 for every Torus environment and 1𝑒− 1 for the FetchReach environment.

Additional experiments We experimented 𝛿-DQN and 𝛿-PPO in more complex environments such
Torus of higher dimension, or other environments of OpenAI Robotic suite (Plappert et al., 2018). In the Torus
environment, both methods fail when the dimension increases above 15 while HER is still able to learn. More
importantly, 𝛿-PPO and 𝛿-DQN did not learn at all in environments such as FetchPush (which is easy to solve
with HER) or HandReach, which has similar structure but higher dimension than FetchReach. In the FetchPush
environment, the objective is to push a cube with a robotic arm to a given goal. We observed that the issue of
our methods was not an exploration issue, since the robotic arm often reaches and pushes the cube randomly.
We tried to increase the generalization across goals with the 𝛿-TD(𝑛) update, but it was to computationally
expensive, as explained in Section 16.1. Limitations of 𝛿-DQN and 𝛿-PPO which could explain these results are
discussed in Section 16.4.



Chapter 17

Adaptive TD updates for successor
operators: a comparison with
C-learning

In all the algorithms used in this thesis for learning the successor state operator 𝑀𝜋(𝑠,d𝑠′), the
successor goal measure𝑀𝜋(𝑠, 𝑔, d𝑔′), or the multi-goal optimal action-value measure 𝑄*(𝑠, 𝑎,d𝑔),
we derived unbiased estimates of Bellman errors for 𝐿2-norms between the current model and
its image under the Bellman operator, typically, if 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2), we used
‖𝑀𝜃(𝑠,d𝑠

′)‖2𝜌 =
∫︀
𝑠1,𝑠2

𝜌(d𝑠1)𝜌(d𝑠2)𝑚
2
𝜃(𝑠1, 𝑠2).

In this chapter, we derive algorithms for adaptive norms, defined using the current parameter
estimate 𝜃. Changing the norm leads to algorithms with the same fixed point 𝑀𝜃 = 𝑀 tar,
but a different numerical behavior: this may be interesting for practical reasons. These
algorithms might allow to tackle some of the technical issues raised by learning successor states
operator. As they are more general, they open doors for future improvements of these methods.
Interestingly, this approach allow us to recover an other known method for multi-goal RL:
C-learning (Eysenbach et al., 2021), as discussed in Section 17.3.

We first describe a natural adaptive norm, corresponding to the KL divergence. Then,
we describe more generally how to use other divergences for the temporal difference update.
This allow us to give a new interpretation of the C-learning update (Eysenbach et al., 2021).
Finally, we present first experiments, in order to understand if the adaptive norms as used in the
C-learning experiments can directly improve performance compared to the 𝛿-DQN approach.

We will describe these adaptive methods in the general context of successor states operator,
as in Part IV, not specifically for the multi-goal setting. As all the multi-goal methods in Part V
were derived from techniques for the successor goal operators, these adaptive approaches can
be used for multi-goal RL as well. As C-learning was developed in the context of multi-goal
RL, our experiments in Section 17.4 are in the multi-goal setting.
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17.1 Kullback-Leibler Temporal Difference for the successor
operators.

We consider the Forward TD update described in Chapter 7. We assume 𝑀𝜃(𝑠1,d𝑠2) =
𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) is our current model of the successor states operator, and we define 𝑀 tar :=
Id+𝛾𝑃𝑀𝜃, the target operator obtained via the Forward Bellman equation obtained in Theo-
rem 7.1.

Since 𝑀𝜃(𝑠,d𝑠2) is a measure on 𝑠2 for each 𝑠, and likewise for 𝑀 tar, one may use the
generalized KL divergence between 𝑀 and 𝑀 tar instead of the 𝐿2 norm:

𝐿(𝜃) := E𝑠∼𝜌KL
(︀
𝑀 tar(𝑠,d𝑠2) ||𝑀𝜃(𝑠,d𝑠2)

)︀
. (17.1.1)

The generalized KL divergence extends the KL divergence to cases where the measures may not
sum to 1. It is defined as KL(𝑝 || 𝑞) :=

∫︀
𝑝 log 𝑝/𝑞−

∫︀
𝑝+
∫︀
𝑞 ⩾ 0 and is the Bregman divergence

associated to the convex function
∫︀
𝑝 log 𝑝. Mathematically, the dependency on 𝜌 is reduced

compared to the 𝐿2 loss, because the KL divergence does not depend on a choice of reference
measure on 𝑠2.

We have the following theorem, which corresponds to Theorem 7.5 but for the KL divergence
instead of the 𝐿2(𝜌) norm.

Theorem 17.1. Let 𝑀𝜃(𝑠1,d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) be a current estimate of 𝑀(𝑠1,d𝑠2).
Consider 𝑀 tar = Id+𝛾𝑃𝑀𝜃, a target estimate for M defined via the Forward Bellman equation.

Let (𝑠, 𝑠′) be a sample of the environment such that 𝑠′ ∼ 𝑃 (𝑠′|𝑠) and 𝑠2 ∼ 𝜌 is sampled
independently, we define ̂︀𝛿𝜃KL-TD(𝑠, 𝑠

′, 𝑠2) as:

̂︀𝛿𝜃KL-TD(𝑠, 𝑠
′, 𝑠2) :=

𝜕𝜃𝑚𝜃(𝑠, 𝑠)

𝑚𝜃(𝑠, 𝑠)
+ 𝜕𝜃𝑚𝜃(𝑠, 𝑠2)

(︂
𝛾
𝑚𝜃𝑡(𝑠

′, 𝑠2)

𝑚𝜃(𝑠, 𝑠2)
− 1

)︂
(17.1.2)

Then ̂︀𝛿𝜃KL-TD is an unbiased estimate of the KL error:

E𝑠∼𝜌,𝑠′∼𝑃 (𝑠,d𝑠′),𝑠2∼𝜌

[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2)

]︁
= 𝜕𝜃E𝑠∼𝜌KL

(︀
𝑀 tar(𝑠,d𝑠2) ||𝑀𝜃(𝑠,d𝑠2)

)︀
. (17.1.3)

Contrary to the forward TD above, this does not reduce to ordinary TD on each 𝑠2 in
the tabular case. Still, the fixed point 𝑀 = Id+𝛾𝑃𝑀 is the same; the Bellman gaps are
just rescaled adaptively for the gradient descent. The principle extends to backward TD and
second-order methods (Bellman–Newton), by changing 𝑀 tar and replace it by the images via
the Backward Bellman operator or the Bellman–Newton operator. In Bellman–Newton, the
additional factors 1/𝑚 may help with the numerical instability of the quadratic term, but will
not help with the variance from choosing (𝑠, 𝑠1, 𝑠2).

Proof. The proof is similar to the proof of Theorem 7.5. As with the 𝐿2(𝜌) norm, the KL divergence
KL
(︀
𝑀tar(𝑠,d𝑠2) ||𝑀𝜃(𝑠, d𝑠2)

)︀
is infinite because 𝑀tar is not absolutely continuous with respect to 𝜌. But its

the gradient of the KL divergence is well defined. While we formally handled this for the 𝐿2 norm, we only
give here an informal explanation here. First, consider 𝑀0(𝑠1, d𝑠2) = 𝑚0(𝑠1, 𝑠2)𝜌(d𝑠2) a measure, absolutely
continuous with respect to 𝜌, then we have:

E𝑠∼𝜌KL(𝑀0(𝑠,d𝑠2) ||𝑀𝜃(𝑠, d𝑠2)) =

=

∫︁
𝑠,𝑠2

𝜌(d𝑠)𝜌(d𝑠2)𝑚0(𝑠, 𝑠2) log

(︂
𝑚0(𝑠, 𝑠2)

𝑚𝜃(𝑠, 𝑠2)

)︂
+

∫︁
𝑠,𝑠2

𝜌(d𝑠)𝜌(d𝑠2)(𝑚𝜃(𝑠, 𝑠2)−𝑚0(𝑠, 𝑠2))

and by taking the gradient we have:

𝜕𝜃E𝑠∼𝜌KL(𝑀0(𝑠, d𝑠2) ||𝑀𝜃(𝑠,d𝑠2)) (17.1.4)

= −
∫︁
𝑠,𝑠2

𝜌(d𝑠)𝜌(d𝑠2)𝑚0(𝑠, 𝑠2)𝜕𝜃 log (𝑚𝜃(𝑠, 𝑠2)) +

∫︁
𝑠,𝑠2

𝜌(d𝑠)𝜌(d𝑠2)𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (17.1.5)

= −
∫︁
𝑠,𝑠2

𝜌(d𝑠)𝑀0(𝑠, d𝑠2)𝜕𝜃 log (𝑚𝜃(𝑠, 𝑠2)) +

∫︁
𝑠,𝑠2

𝜌(d𝑠)𝜌(d𝑠2)𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (17.1.6)

We see that the gradient formula is well defined, even if 𝑀0 is not absolutely continuous with respect to 𝜌.
Hence, as fr the 𝐿2(𝜌) norm, we say that while the KL divergence is infinite, its gradients are well-defined,
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with equation (17.1.6). Hence, we have:

𝜕𝜃E𝑠∼𝜌KL
(︀
𝑀tar(𝑠,d𝑠2) ||𝑀𝜃(𝑠, d𝑠2)

)︀
=

= −
∫︁
𝑠,𝑠2

𝜌(d𝑠)𝑀tar(𝑠,d𝑠2)𝜕𝜃 log (𝑚𝜃(𝑠, 𝑠2)) +

∫︁
𝑠,𝑠2

𝜌(d𝑠)𝜌(d𝑠2)𝜕𝜃𝑚𝜃(𝑠, 𝑠2)

We first study the first part:

−
∫︁
𝑠,𝑠2

𝜌(d𝑠)

(︂
𝛿𝑠(d𝑠2) + 𝛾

∫︁
𝑠′
𝑃 (𝑠, d𝑠′)𝑚𝜃(𝑠

′, 𝑠2)𝜌(d𝑠2)

)︂
𝜕𝜃 log (𝑚𝜃(𝑠, 𝑠2))

= −
∫︁
𝑠,𝑠′,𝑠2

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝜌(d𝑠2)
(︀
𝜕𝜃 log𝑚𝜃(𝑠, 𝑠) + 𝛾𝑚𝜃(𝑠

′, 𝑠2)𝜕𝜃 log (𝑚𝜃(𝑠, 𝑠2))
)︀

= −
∫︁
𝑠,𝑠′,𝑠2

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝜌(d𝑠2)
(︀
𝜕𝜃 log𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃 log𝑚𝜃(𝑠, 𝑠2)

(︀
𝛾𝑚𝜃(𝑠

′, 𝑠2)
)︀)︀

Hence, we have:

𝜕𝜃E𝑠∼𝜌KL(𝑀0(𝑠, d𝑠2) ||𝑀𝜃(𝑠, d𝑠2)) =

= −
∫︁
𝑠,𝑠′,𝑠2

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝜌(d𝑠2)
(︀
𝜕𝜃 log𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃 log𝑚𝜃(𝑠, 𝑠2)

(︀
𝛾𝑚𝜃(𝑠

′, 𝑠2)
)︀
− 𝜕𝜃𝑚𝜃(𝑠, 𝑠2)

)︀
= −

∫︁
𝑠,𝑠′,𝑠2

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝜌(d𝑠2)
(︀
𝜕𝜃 log𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃 log𝑚𝜃(𝑠, 𝑠2)

(︀
𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠′, 𝑠2)
)︀)︀

= −
∫︁
𝑠,𝑠′,𝑠2

𝜌(d𝑠)𝑃 (𝑠, d𝑠′)𝜌(d𝑠2) ̂︀𝛿𝜃F-TD(𝑠, 𝑠′, 𝑠2)

Exponential model Interestingly, we can use an exponential model, and parametrize 𝑚𝜃

as: 𝑚𝜃(𝑠1, 𝑠2) = exp(𝐸𝜃(𝑠1, 𝑠2)). The first advantage of this parametrization is that 𝑚𝜃 is now
always positive. Then, an other advantage is that it might be easier for a model to learn a
function taking values in a wide interval (when 𝑠1 ≈ 𝑠2, 𝑚(𝑠1, 𝑠2) goes to infinity, while it is of
order 𝑂(1) everywhere else). In that case, the KL-TD becomes:

̂︀𝛿𝜃KL-TD(𝑠, 𝑠
′, 𝑠2) = 𝜕𝜃𝐸𝜃(𝑠, 𝑠) + 𝜕𝜃𝐸𝜃(𝑠, 𝑠2) (𝛾 exp(𝐸𝜃(𝑠

′, 𝑠2))− exp(𝐸𝜃(𝑠, 𝑠2))) (17.1.7)

While it was formally possible to learn 𝑚𝜃 with an exponential parametrization with the 𝐿2(𝜌)
norm, we observed numerical instabilities in practice. With the KL-TD update, the gradient
𝜕𝜃𝑚𝜃(𝑠1, 𝑠2) is rescaled by the value of 𝑚𝜃(𝑠1, 𝑠2), which mitigates the numerical issue.

One drawback of this parametrization, is that some of the algorithms obtained in this thesis
are not possible to use anymore. In particular, the FB parametrization with reduce variance
introduced in Section 11.3.2 is not possible to use with an exponential model, because the
bilinear assumption is necessary.

17.2 General form of adaptive TD updates.

In the previous Section, we obtained an adaptive TD update via the KL divergence. Other
divergences between the measures 𝑀𝜃 and 𝑀 tar lead to TD variants, still computing the same
fixed point but with different updates. Let ℓ : R2 → R be a loss function such that for each 𝑥,
the function 𝑦 ↦→ ℓ(𝑥, 𝑦) is convex with a minimum for 𝑦 = 𝑥. Define the divergence 𝐷ℓ between
two measures 𝑀1 = 𝑚1𝜌 and 𝑀2 = 𝑚2𝜌 by 𝐷ℓ(𝑀1,𝑀2) := E𝑠,𝑠2∼𝜌[ℓ(𝑚1(𝑠, 𝑠2),𝑚2(𝑠, 𝑠2))].
Each such choice leads to a form of TD for 𝑀 by taking the update 𝛿𝜃 = −𝜕𝜃𝐷ℓ(𝑀

tar,𝑀𝜃).
The forward TD introduced in Section 7.3 corresponds to ℓ = 1

2 (𝑥− 𝑦)
2. The KL-TD update in

the previous section corresponds to ℓ(𝑥, 𝑦) = 𝑥 log 𝑥/𝑦 − 𝑥+ 𝑦, for which 𝐷ℓ is the generalized
Kullback–Leibler divergence.

Not all choices of ℓ provide a tractable update. Several choices lead to tractable weighted
TD updates of the form

E𝑠∼𝜌, 𝑠′∼𝑃 (d𝑠′|𝑠), 𝑠2∼𝜌

[︂
𝜕𝜃𝑚𝜃(𝑠, 𝑠)

𝑤(𝜃, 𝑠, 𝑠)
+
𝜕𝜃𝑚𝜃(𝑠, 𝑠2)

𝑤(𝜃, 𝑠, 𝑠2)
(𝛾𝑚𝜃𝑡(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2))

]︂
(17.2.1)

for some particular choices of 𝑤. KL-TD is 𝑤(𝜃, 𝑠, 𝑠2) := 𝑚𝜃(𝑠, 𝑠2).
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In the next Section, we show that C-learning (Eysenbach et al., 2021) is a particular case of
the adaptive TD method.

17.3 Relationship with 𝐶-learning

We now turn to the C-learning algorithm (Eysenbach et al., 2021). These authors introduce an
algorithm to train 𝑚 via a logistic regression to tell the difference between samples from 𝜌 and
samples from 𝑀 tar. This turns out to correspond to the weight 𝑤 := 𝑚𝜃(1+ (1− 𝛾)𝑚𝜃)/(1− 𝛾)
in the weighted TD update (17.2.1) (equation (17.2.1)), and results from the loss ℓ(𝑥, 𝑦) =

1
𝐶(𝑥)𝐻(𝐶(𝑥), 𝐶(𝑦)) where 𝐻 is the cross-entropy 𝐻(𝑝, 𝑞) := −𝑝 log 𝑞 − (1 − 𝑝) log(1 − 𝑞) and
𝐶(𝑥) := 1

1+(1−𝛾)𝑥 .
Precisely, the algorithm is a logistic regression on pairs (𝑠, 𝑠2), with negative examples

sampled by 𝑠 ∼ 𝜌, 𝑠2 ∼ 𝜌, and positive examples sampled by 𝑠 ∼ 𝜌, 𝑠2 ∼ (1− 𝛾)𝑀 tar(𝑠,d𝑠2).
Since the mass of the successor state measure 𝑀 is 1

1−𝛾 , (1− 𝛾)𝑀 is a probability measure.
With an equal number of positive and negative examples, the optimal classifier is

𝑝*+ = (1− 𝛾) 𝑀 tar

𝜌+ (1− 𝛾)𝑀 tar
= (1− 𝛾) 𝑚tar

1 + (1− 𝛾)𝑚tar

and
𝑝*− =

1

1 + (1− 𝛾)𝑚tar

The predicted values 𝑝+ implicitly correspond to a model 𝑚𝜃 defined such that

𝑝+ =: (1− 𝛾) 𝑚𝜃

1 + (1− 𝛾)𝑚𝜃

which corresponds to

𝑚𝜃(𝑠1, 𝑠2) =
𝑝+(𝑠1, 𝑠2)

𝑝−(𝑠1, 𝑠2)
(17.3.1)

The optimum is when 𝑚𝜃 = 𝑚tar: learning moves 𝑀𝜃 away from 𝜌 and towards 𝑀 tar.
The logistic model is 𝑝+(𝑠, 𝑠2) = sigmoid(𝐸𝜃(𝑠, 𝑠2)) with 𝐸𝜃 the pre-activation value. Using

equation (17.3.1), this corresponds to a model 𝑚𝜃 of the successor operator defined via

(1− 𝛾)𝑚𝜃 = exp𝐸𝜃,

which is the exponential parametrization introduced in Section 17.1 with the KL-TD update.
Sampling from 𝑀 tar = Id+𝛾𝑃𝑀𝜃 is done by sampling from the Dirac term and from

(1− 𝛾)𝑚𝜃(𝑠
′, 𝑠2)𝜌(d𝑠2). The latter is done by sampling from 𝜌 and reweighting by (1− 𝛾)𝑚𝜃.

In the end, the resulting update amounts to a weighted TD (17.2.1) on 𝑚𝜃 with weight

𝑤(𝜃, 𝑠, 𝑠2) := 𝑚𝜃(𝑠, 𝑠2)(1 + (1− 𝛾)𝑚𝜃(𝑠, 𝑠2)) (17.3.2)

although it is derived in a different way. The underlying loss between 𝑀𝜃 and 𝑀 tar is the
following: Letting 𝐻(𝑥, 𝑦) := −𝑥 log 𝑦 − (1 − 𝑥) log(1 − 𝑦) be the cross-entropy between two
Bernoulli distributions with parameters 𝑥, 𝑦 ∈ [0; 1], this derives from the loss

𝐿(𝜃) = E
𝑠∼𝜌, 𝑠2∼ 𝜌+(1−𝛾)𝑀tar

2

[︂
𝐻

(︂
1

1 + (1− 𝛾)𝑚tar(𝑠, 𝑠2)
,

1

1 + (1− 𝛾)𝑚𝜃(𝑠, 𝑠2)

)︂]︂
(17.3.3)

(up to scaling): this is the loss corresponding to learning a density via a classifier that contrasts
it with samples from a reference distribution 𝜌.

In addition, for goal-oriented policy gradient/DDPG, they maximize the expected log-loss
to reach the target 𝑠2 instead of the probability, namely, E log 𝑝+ = E𝑠∼𝜌 log(1− 1/(1 + (1−
𝛾)𝑚(𝑠, 𝑠2))) instead of E𝑠∼𝜌𝑚(𝑠, 𝑠2) as would result from a standard value-based policy gradient
with a pointwise Dirac reward at 𝑠2. This is limited to a goal-oriented setup rather than dense
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rewards, but can be extended to feature goals 𝑔 = 𝜙(𝑠2) by learning all models on (𝑠, 𝜙(𝑠2))
instead of (𝑠, 𝑠2).

This algorithm learns the density 𝑚 by contrasting it with an arbitrary reference distribution
𝜌. As a general density estimation method, this makes sense as long as 𝜌 is not too different
from 𝑚. This is the case here: typically 𝜌 will be the set of all visited states, and 𝑚 has to
predict which of those states lie in the future of which others. Namely, 𝜌(d𝑠2) is typically the
average of 𝑀(𝑠,d𝑠2) over 𝑠.

This is formalized in the following Proposition. A minor difference between our setup and
Eysenbach–Salakhutdinov–Levine is that they define successor states starting at time 𝑡 + 1
whereas we start at time 𝑠𝑡. Here we consider the version of their algorithm starting at time 𝑠𝑡.

Proposition 17.2. Consider the update of C-learning (Eysenbach et al., 2021) starting at time
𝑡 instead of time 𝑡+ 1, defined by a classifier working on triplets (𝑠, 𝑎, 𝑔). Let 𝑝+𝜃 and 𝑝−𝜃 be the
values returned by the classifier for the positive and negative classes, with parameter 𝜃. Given a
sampled transition (𝑠, 𝑎, 𝑠′), a sampled goal state 𝑔, and a sampled action 𝑎′ ∼ 𝜋(𝑎′|𝑠′, 𝑔) from
the goal-oriented policy, the update 𝛿𝜃 is defined by

𝜅 := stopgrad

(︂
𝑝+𝜃 (𝑠

′, 𝑎′, 𝑔)

𝑝−𝜃 (𝑠
′, 𝑎′, 𝑔)

)︂
, (17.3.4)

𝐿(𝜃) := (1− 𝛾) log 𝑝+𝜃 (𝑠, 𝑎, 𝑠) + log 𝑝−𝜃 (𝑠, 𝑎, 𝑔) + 𝛾 𝜅 log 𝑝+𝜃 (𝑠, 𝑎, 𝑔), (17.3.5)
𝛿𝜃 := 𝜕𝜃𝐿(𝜃) (17.3.6)

where we use (𝑠, 𝑎, 𝑠) instead of (𝑠, 𝑎, 𝑠′) in the first term due to defining successor states starting
at time 𝑡 instead of 𝑡+ 1.

From this classifier, define a model 𝑞𝜃 of the goal-oriented 𝑞-function via

(1− 𝛾)𝑞𝜃(𝑠, 𝑎, 𝑔) := 𝑝+𝜃 (𝑠, 𝑎, 𝑔)/𝑝
−
𝜃 (𝑠, 𝑎, 𝑔). (17.3.7)

Then the update above is equal to the goal-oriented TD update,

𝛿𝜃 =
𝜕𝑞𝜃(𝑠, 𝑎, 𝑠)

𝑤(𝜃, 𝑠, 𝑎, 𝑠)
+
𝜕𝑞𝜃(𝑠, 𝑎, 𝑔)

𝑤(𝜃, 𝑠, 𝑎, 𝑔)
(𝛾𝑞𝜃(𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)) (17.3.8)

with weights

𝑤(𝜃, 𝑠, 𝑎, 𝑔) := 𝑞𝜃(𝑠, 𝑎, 𝑔)
1 + (1− 𝛾)𝑞𝜃(𝑠, 𝑎, 𝑔)

1− 𝛾
. (17.3.9)

If the classifier is defined by pre-activation values 𝐸𝜃(𝑠, 𝑎, 𝑔), namely, 𝑝+𝜃 = sigmoid(𝐸𝜃(𝑠, 𝑎, 𝑔)),
then we find 𝑞𝜃(𝑠, 𝑎, 𝑔) = (exp𝐸𝜃(𝑠, 𝑎, 𝑔))/(1− 𝛾).

Proof. This is a direct computation, writing the classifier as 𝑝+𝜃 = sigmoid(𝐸𝜃(𝑠, 𝑎, 𝑔)).

17.4 Experiments

We now compare the C-learning algorithm with the 𝛿-DQN algorithm introduced in Chapter 15.
Our main question is: is the C-learning update (corresponding to the adaptive TD update
described in last section) significantly better than the 𝛿-DQN update? As the technical details
in our own experiments with 𝛿-DQN or HER are very different than those of the C-learning
original paper, we performed two distincts experiments:

1. First, we implemented 𝛿-DQN and KL-TD in the open source code provided by the authors
together with the C-learning original paper (Eysenbach et al., 2021), and compared the
three methods together (Figure 17.1a).

2. Then, we implemented the C-learning update in the open-source HER code base we used
as a starting point for our 𝛿-DQN experiments (Dai, 2019). The goal was to check whether
C-learning was able to solve an environment in which 𝛿-DQN is failing (Figure 17.1b).
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The conclusion is the following: there is no empirical evidence that the C-learning update is
significantly better than the 𝛿-DQN update:

1. In the first experimental setting, we observe that C-learning, 𝛿-DQN and KL-TD are
performing similarly.

2. In the second one, C-learning is succeeding in the same environments as 𝛿-DQN (FetchReach)
and failing in the same too (FetchPush), while HER can solve these two, and more difficult
cases.

More experimental details are given in the following.

(a) Comparing the original implementation of C-learning together with the KL-TD and 𝛿-DQN update
implemented in the same code base with the same experimental details. We experimented the two
environments with available code and hyperparameters in which the C-learning update is tested in the
original paper (without Monte-Carlo, which is biased): SawyerReach (Left) and SawyerWindow (right).
In SawyerReach, there is no significant difference between the three methods. In SawerWindow, the
training is noisy, and there is no clear difference either.

(b) Comparing HER and the C-learning update, both together with DDPG, implemented in an
HER open-source implementation (Dai, 2019) we also used for our 𝛿-DQN implementation. In the
FetchReach environment (Left), both HER and C-learning are able to learn (as 𝛿-DQN, see figure 16.1).
In FetchPush (right), the next environment in the OpenAI suite (Plappert et al., 2018), HER is able to
learn while C-learning is not (as 𝛿-DQN, see Section 16.4). Hence, in that setting, there is no significant
difference between 𝛿-DQN and C-learning.

Figure 17.1: An experimental comparison between 𝛿-DQN, KL-TD, HER, and C-learning.

Experimental details. Our first experiments (Figure 17.1a) started from the C-learning
implementation provided by the authors (Eysenbach et al., 2021). In the paper, the authors
experiment in eight environments, but specific hyperparameters are provided for four of them in
the repository (SawyerReach, SawyerWindow, SawyerPush, SawyerDrawer), hence, we restrict
ourselves to these last four. Among these four, only two (SawyerReach, SawyerWindow) are
trained with an unbiased algorithm. Indeed, the experiment in SawyerPush and SawyerDrawer
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are done with what the authors call the Monte-Carlo update, which is biased, similarly to HER.
While this works in practice in these deterministic environments, it might be prevent learning
in some settings, similarly to experiments in Figure 16.1. Therefore, we only compare unbiased
methods together, and focus on the two environments SawyerReach and SawyerWindow. In
these two environments, we first re-wrote the C-learning algorithm into a strictly equivalent
method, but written as an algorithm learning 𝑞𝜃(𝑠, 𝑎, 𝑔), as described in the previous Section.
In this implementation, 𝑞𝜃(𝑠, 𝑎, 𝑔) is parametrized as 𝑞𝜃(𝑠, 𝑎, 𝑔) = 1

1−𝛾 exp(𝐸𝜃(𝑠, 𝑎, 𝑔)), and
𝐸𝜃(𝑠, 𝑎, 𝑔) is a MLP network. In the same setting, keeping exactly the same technical details,
we implement the KL-TD update and the 𝛿-DQN update. The KL-TD update is implemented
using the same parametrization 𝑞𝜃(𝑠, 𝑎, 𝑔) =

1
1−𝛾 exp(𝐸𝜃(𝑠, 𝑎, 𝑔)). The 𝛿-DQN update is too

unstable with an exponential parametrization, hence for the 𝛿-DQN update we use an ELU
activation ELU(𝑥) = exp(𝑥) if 𝑥 < 0 and ELU(𝑥) = 1 + 𝑥 if 𝑥 ⩾ 0, and parametrize:
𝑞𝜃(𝑠, 𝑎, 𝑔) =

1
1−𝛾ELU(𝐸𝜃(𝑠, 𝑎, 𝑔)). For C-learning, we kept the settings provided in the author’s

repository. For KL-TD and 𝛿-DQN, we tuned kept all the original except hyperparameters,
except 3 which were tuned separately: the learning rates of the actor and the critic (both
trained with Adam (Kingma and Ba, 2015)) in the set {1𝑒− 3, 1𝑒− 4}, and the weight of the
Dirac term of the gradient (as in the experiments with 𝛿-DQN and 𝛿-AC in Chapter 16), in the
set {1𝑒− 2, 1𝑒− 1, 1., 1𝑒1, 1𝑒2}. In practice, these hyperparameters had relatively little impact,
and the selected learning rates were 1𝑒− 4 and the weight of the Dirac update was 1𝑒1. We
report the final distance to the goal at the end of an episode.

Our second set of experiments took the opposite viewpoint: we implemented the C-
learning update in an open-source implementation (Dai, 2019) of Hindsight Experience Re-
play (Andrychowicz et al., 2017). The goal was to compare experiment C-learning in the setting
in which we performed our experiments of 𝛿-DQN and 𝛿-AC, in which we now that the baseline,
the hyperparameter of HER were well chosen, such that it is able to solve hard environments.
Indeed, in the original C-learning paper (Eysenbach et al., 2021), HER is not able to learn even
in the very easy SawyerReach environment, suggesting the method could be more optimized.
In these experiments, we learn 𝑞𝜃(𝑠, 𝑎, 𝑔) = 1

1−𝛾 exp(𝐸𝜃(𝑠, 𝑎, 𝑔)) with the adaptive TD update
equivalent to C-learning, as discussed in the previous section. This update is used with DDPG
as in the original code base. We kept all the relevant technical details described in the original
C-learning paper (architecture, clipping of the Q-value, optimizers). HER is trained with the
hyperparameters provided in the open-source repository. For C-learning, as in the previous
experiments, we tuned 3 hyperparameters: the learning rates of the actor and the critic (both
trained with Adam (Kingma and Ba, 2015)) in the set {1𝑒− 3, 1𝑒− 4}, and the weight of the
diract term of the gradient, in the set {1𝑒−2, 1𝑒−1, 1., 1𝑒1, 1𝑒2}. In practice, as in the previous
experiments, these hyperparameters had relatively little impact, and the selected learning rates
were 1𝑒− 4 and the weight of the Dirac update was 1𝑒1. We report the success rate, which is
the frequency of reaching the goal in the evaluation trajectories, up to a precision 𝜀 specified in
the environment. In the FetchReach environment, an epoch is 20 episodes. In the FetchPush
environment, an epoch is 800 episodes. For every other hyperparameter we used the default
values in the repository.





Conclusion

In this thesis, we introduced several mathematical approaches and principled methods for deep
learning and deep reinforcement learning. Our goal was to understand some crucial properties
that principled methods should satisfy, in order to be robust, stable, efficient and work in many
settings. Then, we tried to define methods which could satisfy these properties. Along that
process, we tried to understand the mathematical objects at the core of our learning settings,
how to define them, learn them, and their properties.

Our first project (Chapter 3, Blier and Ollivier (2018)) proposed an information theory
viewpoint on the complexity of deep learning models. We proved empirically the ability of deep
neural networks to compress the training data even when accounting for parameter encoding.
Hence, deep learning models, even with a large number of parameters, compress the data well,
and these approaches are principled from an information theory point of view: the number of
parameters is not an obstacle to compression.

We then introduced All Learning Rates At Once (Alrao) (Chapter 4, Blier et al. (2019)), an
optimization method for neural networks removing the burden of finding the optimal learning
rate, by instead assigning to each unit or feature in the network its own learning rate sampled
from a random distribution spanning several orders of magnitude. Surprisingly, Alrao performs
close to SGD with an optimally tuned learning rate, for various architectures and problems.
Alrao is a principled way to define robust optimization method with no hyperparameter tuning,
leveraging the redundancy in the neural network architectures.

In Chapter 5, we studied RL in near continuous time environments (Tallec et al. (2019)),
and highlighted empirically and theoretically the lack of robustness of Q-learning approaches to
time discretization. We detail a principled way to build an off-policy RL algorithm that yields
similar performances over a wide range of time discretizations, and confirm this robustness
empirically.

After these projects, we focused our work on an in-depth study of the successor states
operator (Part IV, Blier et al. (2021)). This mathematical object is at the core of Reinforcement
Learning, as it contains the information on all possible value functions for every possible rewards
for a fixed policy, or equivalently the information on all expected occupancy measure starting
from any initial point, for a fixed policy. This object was studied in finite environments (Dayan,
1993), but the continuous state spaces raises more technical issues, especially because the
operator is not a matrix or a function but a measure. While our first motivation for this
project was to improve sample efficiency of policy evaluation, at the end, our contribution were
especially a better theoretical understanding of this object, its properties and equations. This
study then lead to Part V and methods for multi-goal RL. Our main contributions on the
successor states operator are as follows.

In Chapter 6, we properly define the successor states operator in continuous state spaces and
show the relation between the value function and the successor states operator. In Chapter 7, we
derive a Bellman equation and a temporal difference algorithm for the successor states operator
with function approximators and show the relation with standard TD on the value function.
Then in Chapter 8 we show that the successor states operator also satisfies a backward Bellman
equation, which has no equivalent for the value function, and lead to a backward temporal
difference algorithm. We show a relation between forward and backward TD, as backward TD
corresponds in expectation to forward TD on the time reversed process. Then in Chapter 9, we
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introduce second order methods for policy evaluation. These approaches were our first reason
to study the successor states operator at the beginning of the project. We prove that the
successor states operator satisfies a Bellman–Newton equation on the successor states operator,
which also has no equivalent on the value function. We give three interpretations of this new
Bellman–Newton equation : first, as a new way to combine paths in the environments, then, as
the Newton method for policy evaluation, and finally as a expected exact model based update
in the tabular case. This equation leads to a new Bellman–Newton algorithm, with function
approximators, in continuous environments. We study this approach in the simpler tabular case,
show empirically that it is more sample efficient than TD or TD(𝜆) in finite environments, and
provide non asymptotic convergence bounds for this method in the tabular case (Chapter 10),
which interestingly are independent of the number of states, hence are non-vacuous even for
very large or infinite environments. This proves that it is possible to learn the value function in
finite time, with theoretical guarantees, even in an infinite environment. Still, one of the main
practical issues of the Bellman–Newton algorithm with function approximators is its variance,
which makes it highly unstable in practice. To overcome this issue, we consider low rank FB
representations for the successor states (Chapter 11). Using this FB representation allow us to
define updates with lower variance. Additionally, we prove theoretically that the fixed point
of these methods are truncated SVDs of the successor states operator, and that in practice it
converges to its optimal low-rank representation. Finally in Chapter 12 we described several
methods to learn the value function via a model of the successor states operator. In particular,
we see that the successor states operator can be used as a model of the expected eligibility
traces.

We then extended our approach to the multi-goal RL setting (Part V, Blier and Ollivier
(2021)). We tackle the issues of vanishing rewards observed with methods as Universal Value
Function Approximators (Schaul et al., 2015). While methods such as Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017) tackle this issue and achieve great results in practice,
they are known to be biased, and can converge to low-return policies in some cases. We
first study the bias of HER, prove theoretically and empirically that it is unable to learn in
some environments. On the other side, we prove that HER is unbiased and well-founded, in
deterministic environments. We then introduce unbiased Q-learning and Actor-critic algorithms
for multi-goal RL, in the general stochastic setting, by replacing standard sparse rewards of
multi-goal RL by infinitely sparse Dirac rewards, and leveraging their structure.

My goal during this thesis was to improve performance of deep learning and deep RL with
principled approaches. Trying to go from theoretical understanding to experimental results was
quite a journey, and not always successful in the way we intended.

Some of our conclusion were negative results, impossible to translates in practical methods.
In The description Length of Deep Learning Models, our first motivation was to use the
information theory viewpoint to derive well-founded regularizers via compression bounds. At
the end, our best compression bounds were intractable and useless to optimize deep learning
models. But our main contribution was to show that standard deep RL approaches were already
consistent with the information theory viewpoint, without the use of any additional regularizer.

We also sometimes struggled when comparing to standards methods which benefited from
years of careful engineering tuning: in that case, a well-founded method might have nothing to
improve. For example in Making Deep Q-learning approaches robust to time discretization, we
thought that the lack of robustness of standard approaches in near continuous time would be
a huge limitation in usual environments, and that our approach could improve these results.
Actually, we found out that the time discretization of standard environments was set such that
learning was possible, hence we observed almost no improvement in that regime, and had to
look for smaller time discretization to highlight the practical issue we identified theoretically.
But our contribution gave some interesting insights on some ways to design robust Q-learning
agents.

Our study of the successor states operator happened to be even harder. We started this
project with the hope of a significant practical impact on policy evaluation, with function
approximators, thanks to the Bellman–Newton equation and its different exciting interpretations.
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In turned out we quickly encountered experimental obstacles, at first because of the variance of
the method then for other reasons. We tried to switch to the multi-goal setting but did not
succeed in reaching results comparable to those of HER in standard environments.

During this adventure, we understood a lot. On the successor states operator, which we
believe is at the core of reinforcement learning. On the different ways to leverage gathered
information for policy evaluation. And some of our most striking results were not in the
direction we expected. For example, studying the tabular RL setting was not our main goal.
But at some point we wondered what would be the sample efficiency of our method in that
case, to understand how much gain we could hope in the general continuous case compared
to temporal difference. This lead to a non-vacuous convergence bound for policy evaluation,
even for very large or infinite sets. Similarly, in the multi-goal RL setting, one of our goal was
to design an efficient and principled methods, solving the bias issue of HER. Surprisingly, we
proved that HER is actually unbiased in the deterministic setting.

Many questions remain open for future work: Is there still a way to leverage the path
composition of Bellman–Newton to accelerate policy evaluation, with function approximators,
without the variance issue? Is policy evaluation still a bottleneck of RL, and how much can we
improve it? How could we reliably make use the FB representation in practice? Is it possible to
define an unbiased multi-goal algorithm, able to reach similar performance than HER? What
are the most natural and efficient ways to generalize across goals in an environment? And many
others. I hope that our theoretical insights will be of interest for other researchers in the field,
who might tackle some of these open questions, or others I never imagined.
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Titre: Sur certaines méthodes raisonnées pour l’apprentissage par renforcement profond
Mots clés: Apprentissage profond, apprentissage par renforcement, evaluation de politiques, apprentissage multi-objectif

Résumé: Cette thèse développe et étudie certaines méthodes de
principe pour l’apprentissage profond (DL) et l’apprentissage par
renforcement (RL).

Dans la partie II, nous étudions le DL selon le point de vue
du “Minimum Description Length” principe, qui formalise le rasoir
d’Occam, et postule qu’un bon modèle prédictif est un modèle ca-
pable de compresser sans perte les données (en prenant en compte
le coût de la description du modèle lui-même). Les modèles de DL,
par le nombre de paramètres à encoder, semblent aller à l’encontre
de ce principe. Nous démontrons expérimentalement la capacité
de compression des modèles de DL, même en tenant compte de
l’encodage des paramètres, montrant ainsi que ces approches sont
bien fondées du point de vue de la théorie de l’information.

Dans la partie III, nous étudions deux limitations des approches
standard de DL et RL, et nous développons des méthodes mathé-
matiquement bien fondées pour les dépasser; La première concerne
l’optimisation des modèles de DL avec SGD, et le coût important du
choix d’un bon taux d’apprentissage. Nous introduisons la méthode
Alrao (All learning rates at once) : chaque unité (ou neurone) du
réseau obtient son propre taux d’apprentissage tiré aléatoirement à
partir d’une distribution couvrant de nombreux ordres de grandeur.
De façon surprenante, Alrao obtient des résultats proches de ceux
de SGD avec un taux d’apprentissage optimal, et ce pour diverses
architectures et problèmes. Le second aborde les environnements
de RL en temps quasi continu (robotique, contrôle, jeux vidéos,. . . )
: nous montrons que la discrétisation temporelle (nombre d’actions
par seconde) est un facteur critique, et empiriquement que les
approches basées sur Q-learning ne peuvent plus apprendre quand
le nombre d’action par seconde devient grand. Formellement, nous
prouvons que le Q-learning n’existe pas en temps continu. Nous
détaillons une méthode mathématiquement bien fondée pour con-

struire un algorithme RL invariant à la discrétisation temporelle, et
confirmons cette approche empiriquement.

La partie principale de cette thèse, (Partie IV), étudie
l’opérateur des états successeurs en RL, et comment il peut
améliorer l’efficacité de l’apprentissage de la fonction valeur. Dans
un environnement où la récompense n’est reçue que très rarement,
l’apprentissage de la fonction valeur est un problème difficile.
L’opérateur des états successeurs est un objet mathématique qui
exprime les fonctions valeur de toutes les fonctions de récompense
possibles pour une politique fixe. L’apprentissage de cet opérateur
peut se faire sans signaux de récompense et peut extraire des
informations de chaque transition observée, illustrant une approche
de RL non supervisé. Nous proposons un traitement formel de cet
objet dans des espaces finis et continus avec des approximateurs
de fonctions, comme les réseaux de neurones. Nous présentons
plusieurs algorithmes d’apprentissage et les résultats associés. De
même que la fonction valeur, l’opérateur des états successeurs
satisfait une équation de Bellman. De plus, il satisfait également
deux autres équations à point fixe : une équation de Bellman en
arrière et une équation de Bellman-Newton, exprimant la composi-
tionalité des chemins dans le processus de Markov. Ces nouvelles
relations nous permettent de généraliser à partir des trajectoires
observées de plusieurs façons, ce qui peut conduire à une plus
grande efficacité en pratique.

Enfin, (partie V), l’étude de l’opérateur des états successeurs
et de ses algorithmes nous permet de dériver des méthodes non
biaisées dans le cadre d’un RL à buts multiples. Nous montrons
en outre que l’algorithme Hindsight Experience Replay, populaire
dans ce cadre mais connu pour être biaisé, est en fait non biaisé
dans la classe importante des environnements déterministes.

Title: Some Principled Methods for Deep Reinforcement Learning
Keywords: Deep Learning, Reinforcement Learning, Policy evaluation, Multi-goal reinforcement learning

Abstract: This thesis develops and studies some principled meth-
ods for Deep Learning (DL) and deep Reinforcement Learning
(RL).

In Part II, we study the efficiency of DL models from the con-
text of the Minimum Description Length principle, which formalize
Occam’s razor, and holds that a good model of data is a model
that is good at losslessly compressing the data, including the cost
of describing the model itself. Deep neural networks might seem
to go against this principle given the large number of parame-
ters to be encoded. Surprisingly, we demonstrate experimentally
the ability of deep neural networks to compress the training data
even when accounting for parameter encoding, hence showing that
DL approaches are well principled from this information theory
viewpoint.

In Part III, we tackle two limitations of standard approaches in
DL and RL, and develop principled methods, improving robustness
empirically. The first one concerns optimisation of deep learning
models with SGD, and the cost of finding the optimal learning
rate, which prevents using a new method out of the box without
hyperparameter tuning. When design a principled optimisation
method for DL, ’All Learning Rates At Once’ : each unit or feature
in the network gets its own learning rate sampled from a random
distribution spanning several orders of magnitude. Perhaps sur-
prisingly, Alrao performs close to SGD with an optimally tuned
learning rate, for various architectures and problems. The sec-
ond one tackles near continuous-time RL environments (such as
robotics, control environment, . . . ) : we show that time discretiza-
tion (number of action per second) in as a critical factor, and
that empirically, Q-learning-based approaches collapse with small
time steps. Formally, we prove that Q-learning does not exist in
continuous time. We detail a principled way to build an off-policy

RL algorithm that yields similar performances over a wide range of
time discretizations, and confirm this robustness empirically.

The main part of this thesis, (Part IV), studies the Successor
States Operator in RL, and how it can improve sample efficiency
of policy evaluation. In an environment with a very sparse reward,
learning the value function is a hard problem. At the beginning of
training, no learning will occur until a reward is observed. This
highlight the fact that not all the observed information is used.
Leveraging this information might lead to better sample efficiency.
The Successor State Operator is an object that expresses the value
functions of all possible reward functions for a given, fixed policy.
Learning the successor state operator can be done without reward
signals, and can extract information from every observed transition,
illustrating an unsupervised reinforcement learning approach. We
offer a formal treatment of these objects in both finite and con-
tinuous spaces with function approximators. We present several
learning algorithms and associated results. Similarly to the value
function, the successor states operator satisfies a Bellman equa-
tion. Additionally, it also satisfies two other fixed point equations:
a backward Bellman equation and a Bellman-Newton equation,
expressing path compositionality in the Markov process. These
new relation allow us to generalize from observed trajectories in
several ways, potentially leading to more sample efficiency. Every of
these equations lead to corresponding algorithms for any function
approximators such as neural networks.

Finally, (Part V) the study of the successor states operator and
its algorithms allow us to derive unbiased methods in the setting of
multi-goal RL, dealing with the issue of extremely sparse rewards.
We additionally show that the popular Hindsight Experience Replay
algorithm, known to be biased, is actually unbiased in the large
class of deterministic environments.
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