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In this document, I give an overview of my thesis. We give a summary of
every chapter, highlighting our main contributions. In Section 1, corresponding
to Chapter 3, we present an information theory viewpoint on the complexity of
deep learning models. Then, in Section 2, corresponding to Part III, we present
two published papers, both developing mathematical tools for robustness in deep
RL. The first one (Chapter 4) describes Alrao (All learning rates at once) an
optimization method, not specific to RL, but designed to work in many setting,
including non-stationary RL problems, without hyperparameter tuning. The second
one (Chapter 5) studies near continuous-time environments, and show how to design
robust algorithms in that setting. Section 3 corresponds to Part IV (Chapters 6-12)
and present our work on the successor state operator, for policy evaluation. Finally,
Section 4 corresponds to Part V (Chapter 13-17) and present how we applied tools
developed for the successor state operator to the setting of multi-goal reinforcement
learning.

1 The description length of deep learning models

In Chapter 3, we present the following published paper:

Blier, L. and Ollivier, Y. (2018). The description length of deep
learning models. In Advances in Neural Information Processing Systems

This was the first of this thesis. Its story is worth mentioning. As I was starting to
work with Yann Ollivier, he asked me to read about the information theory viewpoint
(Solomonoff inference, Minimum Description Length) for machine learning.

In information theory and Minimum Description Length (MDL), learning a
good model of the data is recast as using the model to losslessly transmit the data
in as few bits as possible. Consider an image classification setting with a dataset
(for example CIFAR10) 𝒟 = {(𝑥1, 𝑦1), ..., (𝑥𝑁 , 𝑦𝑁)} where the 𝑥𝑖 are the images
and the 𝑦𝑖 are the labels. The classification problem is recast as follows: Alice has
the entire dataset 𝒟, but Bob only has the images {𝑥1, ..., 𝑥𝑁}, and Alice wants to
transmit the labels. The first bpossibility is to directly send a file containing the
labels {𝑦1, ..., 𝑦𝑁} without leveraging the fact that Bob has the images. But it is
possible to do better, by sending a model predicting the labels from the images,
together with the list of errors of the model. A more complex model might make less
errors, hence compress the data more, but the model must be transmitted as well.
The overall codelength can be understood as a combination of quality-of-fit of the
model (compressed data length), together with the cost of encoding (transmitting)
the model itself. The MDL viewpoint is that the best model is the model achieving
the best trade-off between complexity and accuracy of the model, measured with
compression bounds.
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MDL is based on Occam’s razor, and on Chaitin’s hypothesis that “com-
prehension is compression” (Chaitin, 2007): any regularity in the data can be
exploited both to compress it and to make predictions. This is ultimately rooted
in Solomonoff’s general theory of inference (Solomonoff, 1964), whose principle is
to favor models that correspond to the “shortest program” to produce the training
data, based on its Kolmogorov complexity (Li and Vitányi, 2008). If no structure
is present in the data, no compression to a shorter program is possible.

After a few weeks reading about these topics, I came back to Yann. I told him
that while this viewpoint is elegant, it is obviously wrong : indeed, the hypothesis is
that the best model for prediction is also the best model for compression. But the
success of deep learning proves that this is untrue. I took the classification problem
introduced above, with the example of CIFAR10. In that case, the baseline for
compression is encoding directly the labels of the dataset, without any model using
the images, which costs 𝑁× log2(Number of classes) = 50, 000× log2 10 = 166 kbits.
This means that the MDL viewpoint would only select a model if it is able to
encode the labels with less than 166 kbits. But the best model for prediction on
that dataset are deep learning models with millions of parameters, and encoding
the dataset with such a model requires taking into account the cost of encoding
the model weights in a way. The conclusion was quite clear to me: it is impossible
to encode a dataset of 166 kbits using a model with millions of parameters, hence:
The success of deep learning proves that the MDL viewpoint is wrong, and that the
best model for prediction are not the best models for compression. Yann did not
agree with my conclusion, and told me that it was actually possible to compress
such a dataset with a large model, even taking into account the cost of encoding
the weights, using variational techniques introduced by (Hinton and Van Camp,
1993). I went back home, and tried to think of other ways to encode a dataset with
a deep learning model.

It turned out we were both wrong (but to be honest, especially me): it is actually
possible to compress the labels of a dataset like CIFAR10 in less than 166 kbits
(we reached 35 kbits) with a state-of-the-art network (in our case with a VGG19
which has more than 10M parameters), but not with variational methods.

We now describe our contributions. First, we study variational methods for
deep learning.

• We show that the traditional method to estimate MDL codelengths in deep
learning, variational inference (Hinton and Van Camp, 1993), yields surpris-
ingly inefficient codelengths for deep models, despite explicitly minimizing
this criterion. This might explain why variational inference as a regularization
method often does not reach optimal test performance.

This contribution applies for standard variational techniques used while we were
working on this project (Blei et al., 2017), but could be different for more recent
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techniques such as normalizing flows (Rezende and Mohamed, 2015; Kobyzev et al.,
2020).

Then, we introduce new practical ways to compute tight compression bounds
in deep learning models, based on the MDL toolbox (Grünwald, 2007):

• We show that prequential coding on top of standard learning, yields much
better codelengths than variational inference, correlating better with test set
performance. Thus, despite their many parameters, deep learning models do
compress the data well, even when accounting for the cost of describing the
model.

The principle of prequential code is the following: First, Alice sends to Bob the
description of a network architecture and an optimization algorithm (which is only
a few lines of code), and a file containing the first 100 labels of the dataset. Then,
Alice and Bob both train the network with these 100 labels. Alice can now use
this trained network as a model (which will not be very accurate) to encode 100
next labels. Now they both have 200 labels and can train a better model, which
will be used for the next 100 labels. As more labels are transmitted, the model
becomes more accurate and sending more labels is less expensive. This compression
scheme leverages the generalization ability of deep learning networks, even with
very limited datasets. These introduced techniques lead to the main contribution
of this work:

• Deep learning models, even with a large number of parameters, compress the
data well: from an information theory point of view, the number of parameters
is not an obstacle to compression. This is consistent with Chaitin’s hypothesis
that “comprehension is compression”.

Finally, prequential codes also lead to a model selection strategy:

• With prequential codes, we obtain a model selection strategy, suitable for a
deep learning framework, not using cross validation, hence useful for small
datasets settings. This technique was especially used for probing in NLP
(Voita and Titov, 2020).

2 Mathematical approaches towards robustness in
Deep Reinforcement Learning

In this Section, we introduce two published papers developing mathematical tools
for robustness in deep reinforcement learning. First, All learning rates at once
(Alrao) is an optimization method, not specific to RL, but designed to work in many
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setting, including non-stationary RL problems, without hyperparameter tuning.
The second one studies near continuous-time environments, such as continuous
control environments, many video games, ... It first shows that standard approaches
such as DQN, DQQPG fail to learn in that setting when the time discretization
decreases (or equivalently the number of action/observation per second increases),
and then show how to design robust algorithms in that setting.

2.1 Learning with all learning rates at once

In Chapter 4, we present the published paper, which is joint work with Pierre
Wolinski and Yann Ollivier:

Blier, L., Wolinski, P., and Ollivier, Y. (2019). Learning with Ran-
dom Learning Rates. In ECML PKDD 2019 - European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases

This project started from discussions on how to design a learning system able both
to adapt very quickly to new observed patterns, but also to learn complex patterns
which might require a slow learning. I was starting to work in Reinforcement
Learning at that time. In RL, the learning setting is non-stationary : the distribution
of observations can change while the agent is improving its policy, and the learning
methods has to be able to adapt to all of these regimes. My co-author Pierre
Wolinski was interested in topics in AutoML (Guyon et al., 2016). From this
viewpoint, a learning system has to be able to adapt to multiple learning settings
without any hyperparameter tuning, such as settings which would require small
or large learning rates. Many methods were designed to directly set optimal per-
parameter learning rates (Tieleman and Hinton, 2012; Kingma and Ba, 2015), such
as the popular Adam optimizer, but they still require some hyperparameter tuning.

This discussion lead to the idea of a learning system which would be a mixture
of slow learning units, and fast learning units.

• We implemented this idea directly in deep learning models, by using different
learning rates for different neurons, sampled across multiple order of magni-
tudes, hence leveraging redundancy in the network. We call this method All
Learning Rates At Once algorithm (Alrao).

Alrao departs from the usual philosophy of trying to find the “right” learning rates;
instead we take advantage of the overparameterization of network-based models to
produce a diversity of behaviors from which good network outputs can be built.

We then experiment Alrao in multiple settings. Experimentally, we were
interested to see if Alrao was working out-of-the-box, without any hyperparameter
tuning, and how it would compare to SGD with an optimally selected learning rate.
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• Surprisingly, Alrao does manage to learn well over a range of problems from
image classification, text prediction, and reinforcement learning. In our tests,
Alrao’s performance is always close to that of SGD with the optimal learning
rate, without any tuning. Alrao combines performance with robustness : not
a single run failed to learn with the default learning rate range we used. In
contrast, our parameter-free baseline, Adam with default hyperparameters, is
not reliable across the board.

2.2 Making Deep Q-learning methods robust to time dis-
cretization

In Chapter 5, we present the published paper:

Tallec, C., Blier, L., and Ollivier, Y. (2019). Making Deep Q-learning
methods robust to time discretization. In ICML 2019 - Thirty-sixth
International Conference on Machine Learning

In this paper we study the sensitivity of Deep Reinforcement Learning (DRL)
techniques to time discretization, such as what happens when an agent receives 50
observations and is expected to take 50 actions per second instead of 10. In principle,
decreasing time discretization, or equivalently shortening reaction time, should
only improve agent performance. Robustness to time discretization is especially
relevant in near-continuous environments, which includes most continuous control
environments, robotics, and many video games.

This work is a contribution to the problem of robustness of DRL techniques.
Despite the impressive results of DRL techniques in a variety of domains (Silver
et al., 2017; OpenAI, 2018b; Mnih et al., 2015; OpenAI, 2018a), these approaches are
sensitive to a number of factors, including hyperparameterization, implementation
details or small changes in the environment parameters (Henderson et al., 2017;
Zhang et al., 2018). This sensitivity, along with sample inefficiency, largely prevents
DRL from being applied in real world settings. Notably, high sensitivity to
environment parameters prevents transfer from imperfect simulators to real world
scenarios. In this work, the goal is to mitigate one of these sensitivity factors: the
time discretization.

Our first contribution is to show that standard approaches based on estimation
of state-action value functions, such as Deep 𝑄-learning (DQN, Mnih et al. 2015)
and Deep deterministic policy gradient (DDPG, Lillicrap et al. 2015) are not at all
robust to changes in time discretization:

• We show experimentally that when the time discretization decreases in
standard environment, DQN and DDPG are unable to learn at all.
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Intuitively, as the discretization timestep decreases, the effect of individual actions
on the total return decreases too: 𝑄*(𝑠, 𝑎) is the value of playing action 𝑎 then
playing optimally, and if 𝑎 is only maintained for a very short time its advantage
over other actions will be accordingly small. If the discretization timestep becomes
infinitesimal, the effect of every individual action vanishes. Hence, the 𝑄-function
𝑄(𝑠, 𝑎)) collapses to the value function 𝑉 (𝑠) and does not bear any information on
the ranking of actions. We say that there is no continuous-time 𝑄-function.

• Building on (Baird, 1994), we formalize these statement, in the framework of
continuous-time RL, and show that there is no continuous-time 𝑄-function,
hence the poor performance of 𝑄-learning with small time steps (Theorem 5.2).
More precisely, Thus that standard 𝑄-learning is ill-behaved in this setting.

We then looked for an algorithm that would be as invariant as possible to
changing the discretization timestep. Such an algorithm should remain viable when
this timestep is small, and in particular admit a continuous-time limit when the
discretization timestep goes to 0. This leads to the algorithm Deep Advantage
Updating (Algorithm 4). Our first contributions are to show that while there is no
continuous 𝑄-function, there is a continuous advantage function, which is possible
to learn.:

• First, we formally show that while the 𝑄-function 𝑄𝛿𝑡 collapses when the
time discretization 𝛿𝑡 → 0, the rescaled advantage:

𝐴𝛿𝑡(𝑠, 𝑎) =
𝑄𝛿𝑡(𝑠, 𝑎)− 𝑉𝛿𝑡(𝑠)

𝛿𝑡
(2.1)

converge to a continuous time limit advantage function 𝐴(𝑠, 𝑎) (Theorem 5.3).

• We then learn together models of the value function 𝑉 (𝑠) and the continuous
time limit advantage function 𝐴(𝑠, 𝑎). We formally show that there are
Bellman equations on 𝑉 and 𝐴, and we use it for policy optimization, with
the Deep Advantage Updating (DAU) algorithm.

In order to define a time-discretization invariant algorithm, it is also necessary to
define an invariant exploration strategy:

• We formally show that an 𝜀-greedy exploration strategy collapse to no explo-
ration at all when the time-discretization goes to 0 (Theorem 5.4).

• We derive a time-discretization invariant exploration scheme, both for discrete
and continuous actions.
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The principle is the following, inspired by Lillicrap et al. (2016) in the case of
continuous actions, and extended to deterministic actions. For continuous actions,
if 𝑎𝑡 = 𝜋(𝑠𝑡) is the action selected by the current deterministic policy 𝜋 at step
𝑡, we actually perform action �̃�𝑡 := 𝑎𝑡 + 𝑧𝑡, where 𝑧𝑡 is a time-discretization
invariant random process defined via an Ornstein-Uhlenbeck process (Uhlenbeck
and Ornstein, 1930).

Finally, we also show how we can define a time-discretization invariant opti-
mization procedure:

• We show that with a SGD algorithm, the learning rate needs to be of order
𝑂(𝛿𝑡). If it is larger, the algorithm will diverge, if it is smaller, the parameters
stay at their initial values (Theorem 5.5).

We then provide experiments comparing DQN or DPPG to DAU:

• We empirically show that standard 𝑄-learning methods are not robust to
changes in time discretization in continuous control environments (Brock-
man et al., 2016), exhibiting degraded performance, while our algorithm
demonstrates substantial robustness.

3 Policy evaluation via the successor states opera-
tor

In Part IV, we present our work on policy evaluation via the successor states
operator. This part is mainly based on the following preprint, with improved and
additional results:

Blier, L., Tallec, C., and Ollivier, Y. (2021). Learning successor
states and goal-dependent values: A mathematical viewpoint. arXiv
preprint arXiv:2101.07123

In an environment with a very sparse reward, learning the value function as
described in Section 1.4.2 is a hard problem. At the beginning of training, no
learning will occur until a reward is observed. This highlight the fact that not all
the observed information is used. Leveraging this information might lead to better
sample efficiency.

The successor state operator of a Markov reward process is an object that
expresses the value functions of all possible reward functions for a given, fixed
policy. Here we offer a formal treatment of these objects in both finite and
continuous spaces. We present several learning algorithms and associated results.
There are multiple motivations for this approach:
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Figure 1: A learned successor states with function approximation in a maze. We
represent the successor measure 𝑀(𝑠, 𝑠′), where the state 𝑠 marked in red is the
starting state. The arrows represent doors which can only be passed in one direction.

First, learning the successor state operator is done without reward signals and
extracts information from every observed transition, illustrating an unsupervised
reinforcement learning approach. Successor state lie in between model-free and
model-based reinforcement learning approaches, providing a representation of the
future of a state without having to synthesize future states or unrolling synthetic
trajectories.

Then, successor states exploit multiple relationships between how to reach
different states. Similarly to the value function, it satisfies a Bellman equation.
Additionally, it also satisfies two other fixed point equations: a backward Bellman
equation and a Bellman–Newton equation, expressing path compositionality in
the Markov process. These new relation allow us to generalize from observed
trajectories in several ways, potentially leading to more sample efficiency.

Finally, the study of the successor states operator and its algorithms allow us
to derive, in Section 4, unbiased methods in the setting of multi-goal RL, dealing
with the issue of extremely sparse rewards.

3.1 The successor states operator

The successor state operator 𝑀𝜋(𝑠, d𝑠′) of a Markov reward process is an object
that linearly transforms a reward function into the corresponding value function.
In particular, it expresses the value functions of all possible reward functions for a
given, fixed policy. For finite spaces, the entries 𝑀𝑠𝑠′ of the successor state matrix
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describe the expected discounted time spent in state 𝑠′ by a trajectory starting at
𝑠 Dayan (1993) (see Figure 1):

𝑀𝜋
𝑠𝑠′ =

∑︁
𝑡⩾0

𝛾𝑡P(𝑆𝑡 = 𝑠′|𝑆0 = 𝑠) (3.1)

Equivalently:

𝑀𝜋
𝑠𝑠′ = E𝑎𝑡∼𝜋(𝑎|𝑠𝑡),𝑠𝑡+1∼𝑃 (𝑠′|𝑠𝑡,𝑎𝑡)

[︃∑︁
𝑡⩾0

𝛾𝑡
1𝑠𝑡=𝑠′ |𝑠0 = 𝑠

]︃
. (3.2)

The entry 𝑀𝑠𝑠′ is also the value function at 𝑠 if the reward is 1 at 𝑠′ and 0
everywhere else. As such, 𝑀 contains the information about reaching every state
in the environment, not just those states providing a reward.

For a fixed policy 𝜋, the value function 𝑉 𝜋 depends linearly on the reward: in
a finite state space, for any reward function, represented as a vector 𝑅 over states,
its associated value function is

𝑉 𝜋(𝑠) = (𝑀𝜋𝑅) (𝑠) =
∑︁
𝑠2

𝑀𝜋
𝑠𝑠2

𝑅𝑠2 . (3.3)

This equation will allow us to derive policy evaluation algorithms via successor
states. First, we will estimate models of the successor state operator 𝑀𝜋. As 𝑀𝜋

does not depend on the reward, we can learn it in an unsupervised way, without
observing any reward. Contrary to standard value function learning algorithms,
the algorithm can start to learn before observing any reward. Then, we can use the
successor states model to compute a model of the value function once the reward
function is observed, using (3.3).

In the following, we study how to learn a model of the successor state operator
and how to use it. In finite environments with tabular models, this was studied
by Dayan (1993), and we will extend this principle to general continuous state
spaces, with function approximators. In Chapter 6, we introduce the successor
states operator, and its proper definitions of in continuous state space:

• We formally define the successor states operator in general state spaces
(Theorem 6.1), extending the discrete case of Dayan (1993). For continuous
states, this involves some measure theory: the successor state operator defines
for every state 𝑠 a measure over successor states 𝑠′:

𝑀𝜋(𝑠, d𝑠′) = (Id−𝛾𝑃 )−1(𝑠, d𝑠′) =
∑︁
𝑡⩾0

𝛾𝑡(𝑃 𝜋)𝑡(𝑠, d𝑠′) (3.4)

We relate the value function 𝑉 𝜋 to the successor states operator 𝑀𝜋 and the
reward 𝑅 in general state spaces (Proposition 6.3) via:

𝑉 𝜋(𝑠) = (𝑀𝜋 ·𝑅)(𝑠) =

∫︁
𝑠2

𝑀𝜋(𝑠, d𝑠2)𝑅(𝑠2) (3.5)
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We then describe how to represent the successor operator 𝑀𝜋(𝑠, d𝑠′) with function
approximators, as a density 𝑚𝜃(𝑠, 𝑠

′) with respect to a reference measure 𝜙(d𝑠′):

𝑀𝜃(𝑠, d𝑠
′) := 𝑚𝜃(𝑠, 𝑠

′)𝜌(d𝑠′) (3.6)

The reference measure 𝜌 is a probability distribution, such that we are able to
sample 𝑠 ∼ 𝜌. We do not require more knowledge on 𝜌, such as knowing its
probability density function, ... Typically, 𝜌 can be the distribution of states
observed along trajectories sampled with 𝜋 with an initial state 𝑠0 ∼ 𝜌0. Unless
specified, there are no hypothesis on 𝜌. For 𝑚𝜃(𝑠1, 𝑠2), we can use any parametric
family of functions. In practice, we will use deep learning models.

The successor states operator is related but not equivalent to successor fea-
tures (Kulkarni et al., 2016; Borsa et al., 2018; Barreto et al., 2018; Zhang et al.,
2017; Hansen et al., 2020). Given a feature function 𝜙 over the state space 𝒮, the
successor feature is the expectation of the cumulated, discounted future values of 𝜙
given the starting point 𝑠0 of a trajectory (𝑠𝑡) is

E

[︃∑︁
𝑡⩾0

𝛾𝑡𝜙(𝑠𝑡)

]︃
=
∑︁
𝑡⩾0

𝛾𝑡(𝑃 𝑡𝜙)(𝑠0) = (𝑀𝜙)(𝑠0). (3.7)

Thus, the successor representation of a state 𝑠 is obtained by applying 𝑀 to some
user-chosen function 𝜙: 𝑀𝜋 · 𝜙. In practice the function 𝜙 is learned together with
the successor feature. Still, in order to prevent convergence to the trivial solution
𝜙 = 0, an additional loss (such as pixel reconstruction) has to be added. On the
contrary, the successor states operator does not depend on a given function 𝜙, and
can be learned without adding any information independent of the dynamic.

The next steps are then to describe how this density model 𝑚𝜃(𝑠, 𝑠
′) can be

learned, and used for policy evaluation.

3.2 TD algorithms for deep successor states

Once the successor states operator is properly defined, the goal is now to learn it.
We consider a model 𝑀𝜃(𝑠1, d𝑠2) := 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2) parameterized by its density
𝑚𝜃(𝑠1, 𝑠2) with respect to a measure 𝜌, as introduced previously. In Chapter 7,
we derive a temporal difference algorithm for learning 𝑚𝜃(𝑠1, 𝑠2). We extend the
standard temporal difference approach with function approximators described in
Section 1.4.2 to the successor state.

Following this strategy, our first contribution is define such an operator 𝑇 for
the successor state operator:

• We define the (forward) Bellman operator for successor operators:

𝑇 ·𝑀 := Id+𝛾𝑃 ·𝑀, (3.8)
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which corresponds to the standard Bellman equation for value functions, but
for successor states.

We show that that the Bellman operator is 𝛾-contractive, and that its unique
fixed point is the true successor states operator 𝑀𝜋 (Theorem 7.1 and
Proposition 7.2).

Once such an operator is defined, we can derive a stochastic Temporal Difference
estimate for successor states:

• We define the stochastic update ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2), where we assume (𝑠, 𝑠′) is

a transition observed in the Markov Process and 𝑠2 is an independent state.
The update is:

̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2) := 𝜕𝜃𝑚𝜃(𝑠, 𝑠) + 𝜕𝜃𝑚𝜃(𝑠, 𝑠2) (𝛾𝑚𝜃(𝑠

′, 𝑠2)−𝑚𝜃(𝑠, 𝑠2)) (3.9)

We then define the corresponding Forward TD algorithm for successor states
operator (Algorithm 8): informally, at step 𝑡, if our current parameter is 𝜃𝑡,
when observing a transition (𝑠𝑡, 𝑠

′
𝑡) in the environment, we sample 𝑠2 ∼ 𝜌

and define:
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 ̂︀𝛿𝜃F-TD(𝑠𝑡, 𝑠

′
𝑡, 𝑠2) (3.10)

We prove that ̂︀𝛿𝜃F-TD is an unbiased estimate of the Bellman error (Theo-
rem 7.5): if we define the target 𝑀 tar := 𝑇 ·𝑀𝜃 = Id+𝛾𝑃 ·𝑀𝜃, we have:

E𝑠,𝑠′,𝑠2

[︁ ̂︀𝛿𝜃F-TD(𝑠, 𝑠
′, 𝑠2)

]︁
=

1

2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2 (3.11)

where formal definition of the probability laws in the expectation, and of the
norm ‖.‖ are given in the corresponding sections.

The strategy used here is similar to standard policy evaluation for the value
function with function approximations described in Section 1.4.2, and will be
used to derive many algorithms in this thesis: First, we define a contractive
operator 𝑇 such that its unique fixed point is 𝑀𝜋. Hence, for any initialization
𝑀0(𝑠, d𝑠

′), if we define the sequence 𝑀𝑡+1 := 𝑇 · 𝑀𝑡, we have 𝑀𝑡 →𝑡→∞ 𝑀𝜋.
Then, we approximate the sequence 𝑀𝑡 with function approximation. We define
a model 𝑀𝜃(𝑠, d𝑠

′) = 𝑚𝜃(𝑠, 𝑠
′)𝜌(d𝑠′) as introduced above. When observing a

trajectory/observation/transition, we compute a stochastic update ̂︀𝛿𝜃, such that
it is an unbiased gradient step towards the target 𝑀 tar := 𝑇 · 𝑀𝜃𝑡 : E[ ̂︀𝛿𝜃] =
1
2
𝜕𝜃‖𝑀𝜃 −𝑀 tar‖2, and we update 𝜃 with 𝜃𝑡+1 := 𝜃𝑡 − 𝜂 ̂︀𝛿𝜃.

As explained for 𝑉 -function in Section 1.4.2, with such an algorithm, 𝑀𝜋 is
guaranteed to be a fixed point: if there is 𝜃* such that 𝑀𝜃* = 𝑀𝜋, then E[ ̂︀𝛿𝜃] = 0.
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Moreover, if the parametric family 𝑀𝜃 is overparametrized then 𝑀𝜋 is the unique
fixed point of the algorithm.

Experimentally, we demonstrate that we are able to approximate the successor
states operator in simple continuous environments with the Forward TD algorithm,
with deep neural networks.

We know that several variants of TD are used in practice for learning the value
function. We derive similar variants in the context of successor states operator:

• We show how to compute an unbiased forward temporal difference update
with an additional target network (Theorem 7.6).

• We define a 𝑇𝐷(𝑛) update ̂︀𝛿𝜃TD(𝑛) for the successor states operator. Similarly
to the forward TD update, the TD(𝑛) update is an unbiased estimate of the
𝑛-step Bellman error (Theorem 7.7).

• We show how to define and learn the successor state-action operator 𝑀𝜋(𝑠, 𝑎, d𝑠′),
which takes into account the first action (similarly to the 𝑄 function) (Defini-
tion 7.13, Theorems 7.14 and 7.15).

Forward Temporal Difference for successor states corresponds to standard Temporal
Difference for the value function, but on the successor states operator. We will
now present new algorithms for learning the successor states operator, without any
equivalent for the value function, leveraging the additional information contained
in the object.

3.3 The Backward Temporal Difference Algorithm

Informally, the forward TD algorithm is using that, for every target state 𝑠tar, if
we observe a transition 𝑠 → 𝑠′ (hence 𝑠 and 𝑠′ are close to each other), then their
value functions must be close. In this section, we present the backward temporal
difference algorithm, which is using the opposite point of view: for every starting
state 𝑠start, if we observe a transition 𝑠 → 𝑠′, then the value function of 𝑠start if the
reward is localized in 𝑠 must be close to the value function of the same state 𝑠start

if the reward is localized in 𝑠′.
Similarly to forward Temporal Difference, this relation can be formalized as a

fixed point equation over the successor states operator:

• We define the backward Bellman operator for successor states operator as:

𝑀 ↦→ Id+𝛾𝑀 · 𝑃 (3.12)

We show that this operator is 𝛾-contractive and that its unique fixed point is
the true successor states operator 𝑀𝜋 (Theorem 8.1 and Proposition 8.2).
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Figure 2: Combining paths: forward TD, backward TD, and path composition
(Bellman–Newton).

Once this operator is defined, we obtain a algorithm for function approximators
similarly to forward temporal difference:

• We define the stochastic update ̂︀𝛿𝜃B-TD(𝑠2, 𝑠, 𝑠
′), where we assume (𝑠, 𝑠′)

is a transition observed in the Markov Process and 𝑠1 is a state sampled
independently. We then define the corresponding Backward TD algorithm
for successor states operator.
We prove that ̂︀𝛿𝜃B-TD is an unbiased estimate of the backward Bellman error
(Theorem 8.3).

Finally, we analyze the backward TD algorithm from the backward process viewpoint.
Informally, if 𝑃 is the transition matrix of a Markov process, the backward process
is the process corresponding to (infinite) trajectories (..., 𝑠−2, 𝑠−1, 𝑠0, 𝑠1, 𝑠2, ...) in
the reversed order (..., 𝑠2, 𝑠1, 𝑠0, 𝑠−1, 𝑠−2, ...). Viewing the backward TD algorithm
from this viewpoint lead to the following contribution:

• We show that the backward TD update on operators is equivalent to the
forward TD update applied to the backward process (Theorem 8.5).

While the updates ̂︀𝛿𝜃B-TD and ̂︀𝛿𝜃F-TD are not equal, there is therefore a strong
relation between them. Still, the forward TD update has an equivalent update on
the value function while the backward TD update does not. In the next section,
we introduce second-order methods for successor states operator learning.

3.4 Second-order methods for successor states

The Bellman–Newton operator and path concatenation In order to intro-
duce our second-order approaches, let us first give an interpretation of 𝑀𝜋, forward
and backward TD in terms of paths in the environment. In the finite environment
case, we can express 𝑀𝜋

𝑠𝑠′ as a sum over all paths from 𝑠 to 𝑠′ in the environment

𝑀𝜋
𝑠𝑠′ = (Id−𝛾𝑃 𝜋)−1

𝑠1𝑠2
=
∑︁
𝑡⩾0

𝛾𝑡(𝑃 𝜋)𝑡𝑠1𝑠2

=
∑︁
𝑡⩾0

𝛾𝑡
∑︁

path(𝑠0,𝑠1,...,𝑠𝑡)
with 𝑠0=𝑠 and 𝑠𝑡=𝑠′

𝑃 𝜋
𝑠0𝑠1

𝑃 𝜋
𝑠1𝑠2

...𝑃 𝜋
𝑠𝑡−1𝑠𝑡

. =
∑︁

𝑝 path from
𝑠 to 𝑠′

𝛾length(𝑝)P(𝑝)
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where P((𝑠0, ..., 𝑠𝑡)) = 𝑃 𝜋
𝑠0𝑠1

...𝑃 𝜋
𝑠𝑡−1𝑠𝑡

. Therefore, 𝑀𝜋
𝑠𝑠′ is the sum of all paths from 𝑠

to 𝑠′, discounted by their length, and weighted by their probabilities.
From this viewpoint, we can give an other interpretation of forward and backward

TD: When a transition 𝑠 → 𝑠′ is observed, for every target state 𝑠tar forward TD
builds new paths from 𝑠 to 𝑠tar by concatenating the transition (𝑠, 𝑠′) to all known
paths from 𝑠′ to 𝑠tar (Figure 2, left). On the contrary, when 𝑠 → 𝑠′ is observed,
for every starting state 𝑠start, backward TD builds new paths from 𝑠start to 𝑠′ by
concatenating all known paths from 𝑠start to 𝑠 with the transition (𝑠, 𝑠′) (Figure 2,
middle).

This discussion naturally leads to a third algorithm: when observing a transition
(𝑠, 𝑠′), it is possible to build new path from any starting point 𝑠start to any target
state 𝑠tar by concatenating all paths from 𝑠start to 𝑠, to the transition (𝑠, 𝑠′), to all
paths from 𝑠tar (Figure 2, right). Informally, instead of increasing the length of all
known paths by 1 at every step, this would double the length of all known paths at
every step.

In Chapter 9, we define the Bellman-Newton equation and the corresponding
algorithm, corresponding the path composition strategy defined above:

• We define the Bellman-Newton operator:

𝑀 ↦→ 2𝑀 −𝑀 · (Id−𝛾𝑃 𝜋) ·𝑀 (3.13)

and show that the true successor states operator 𝑀𝜋 is a fixed point of the
Bellman–Newton operator (Proposition 9.4).

We show that the update defined via the Bellman–Newton equation 𝑀𝑡+1 :=
2𝑀𝑡 −𝑀𝑡 · (Id−𝛾𝑃 𝜋) ·𝑀𝑡 corresponds to the path concatenation strategy
described above (Theorem 9.6). It also corresponds to the Newton method
for matrix inversion (Pan and Schreiber, 1991), which explains the name
given to the Bellman Newton method method.

Using the Bellman–Newton operator, we then define a Bellman–Newton update
for successor states with function approximation:

• We define the stochastic update ̂︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠
′, 𝑠2), where we assume (𝑠, 𝑠′) is

a transition observed in the Markov Process and 𝑠1 and 𝑠2 are states sampled
independently. We then define the corresponding Bellman–Newton algorithm
for successor states operator (Algorithm 9).

We prove that ̂︀𝛿𝜃BN is an unbiased estimate of the Bellman–Newton error
(Theorem 9.5).

Experimentally, this update raises multiple issues. First, values of 𝑚(𝑠1, 𝑠2) can
reach several order of magnitudes. Typically, when 𝑠1 ≈ 𝑠2 the values can go to
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infinity, but be of order 𝑂(1) in every other cases, and these two regimes needs
to be learned accurately (this first issue is shared by every algorithm learning the
successor state operator). Then, the update ̂︀𝛿𝜃BN(𝑠1, 𝑠, 𝑠

′, 𝑠2) requires the sampling
of one transition (𝑠, 𝑠′), and two additional states 𝑠1 and 𝑠2. On the contrary,
Forward TD and Backward TD only require the sampling of a single additional
state. Hence, the Bellman–Newton update has a variance. Finally, it is known that
Newton’s methods can be numerically unstable. Hence, the high variance becomes
important, as the method can diverge. To counterbalance this variance, we can use
smaller learning rates, but this reduces the efficiency of the method.

These issues makes a vanilla implementation of the Bellman–Newton algorithm
not efficient in continuous environments with function approximations. In Chap-
ter 11 introduced below, we present a possible solution to this issue, via low-rank
parametrization. We will see that this approach allow us to reduce variance, and
still be close to a Bellman–Newton approach in some cases.

Still, we prove that in tabular cases, the Bellman–Newton algorithm approx-
imates the process estimation algorithm (Theorem 9.2), defined as follows: in a
tabular setting, we can learn an estimate 𝑃 of the transition matrix 𝑃 𝜋 by keeping a
frequency matrix of every transition starting from every state. Then, we can define
an estimate of 𝑀𝜋 as �̂� := (Id−𝛾𝑃 )−1. If we also learn �̂� a model of the reward,
we can define a model of the value function as 𝑉 := �̂��̂�. This algorithm trivially
converges to 𝑀𝜋 and 𝑉 𝜋 when the number of samples goes to infinity, because
the matrix inverse is continuous. It corresponds to the Least Squares Temporal
Difference algorithm in the literature (Bradtke and Barto, 1996).

This strategy is only possible in the tabular setting, and has no direct equivalent
in the function approximation setting. Indeed, in a continuous environment, if we
learn a model 𝑃𝜃(𝑠1, d𝑠2) of the transition operator, we can’t directly compute the
inverse (Id−𝛾𝑃 )−1. Using a continuous model 𝑃𝜃(𝑠1, d𝑠2) would still be possible,
for instance by sampling trajectories according to 𝑃𝜃. This is related to model-based
methods, and has known technical issues, discussed in Section 1.3.

• In the tabular setting, the Bellman–Newton algorithm approximates the
process estimation algorithm (Theorem 9.2), while never estimating the
process directly.

In the next Section, we study theoretically the convergence properties of the process
estimation algorithm.

3.5 A non-asymptotic convergence bound for policy evalua-
tion via process estimation

In order to better understand how much the Bellman–Newton algorithm can
potentially improve the sample efficiency of policy evaluation, we study in more
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details in Chapter 10 the tabular case.
We therefore study the sample efficiency of policy evaluation with the process

estimation algorithm, which corresponds to the LSTD algorithm (Bradtke and
Barto, 1996) in its very specific tabular case. We consider the i.i.d data model:
we assume the process is ergodic and has an invariant measure 𝜌. Then, we
observe independent transitions (𝑠𝑡, 𝑟𝑡, 𝑠

′
𝑡) of the environment such that 𝑠𝑡 ∼ 𝜌,

𝑟𝑡 ∼ ℛ(.|𝑠𝑡), 𝑠′𝑡 ∼ 𝑃 (.|𝑠𝑡), and we consider the 𝐿1(𝜌) norm on 𝒮 defined as
‖𝑓‖𝐿1(𝜌) =

∑︀
𝑠∈𝒮 𝜌(𝑠)|𝑓(𝑠)|. We also assume that the reward 𝑟 is bounded by 𝑅max.

We consider the process estimation algorithm defined in the previous section:
we learn 𝑃𝑡 as a frequency matrix: 𝑃𝑡 =

𝑛𝑠𝑠′
𝑛𝑠

where 𝑛𝑠𝑠′ is the number of times the
transition (𝑠, 𝑠′) was observed, and 𝑛𝑠 =

∑︀
𝑠2
𝑛𝑠𝑠2 . Similarly, we learn �̂�𝑡 as �̂�𝑡(𝑠) =

1
𝑛𝑠

∑︀
𝑘⩽𝑡|𝑠𝑘=𝑠 𝑟𝑘. Then, we estimate the value function as 𝑉𝑡 = (Id−𝛾𝑃𝑡)

−1�̂�𝑡. This
estimate clearly converges to the true value function 𝑉 𝜋, as 𝑃𝑡 → 𝑃 𝜋, �̂�𝑡 → 𝑅
almost surely, and the inverse is continuous. We are interested into measuring the
sample efficiency of this approach.

We provide a convergence bound on 𝑉𝑡 with the process estimation algorithm
for the 𝐿1(𝜌) norm. The most interesting feature this new convergence bound is
that it does not depend on the number of states, or of the measure of infrequently
visited states. Hence the result is non-vacuous even if some states are almost-never
observed, or for a very large number of states, or even for a discrete infinite state
space. Up to our knowledge, it is the first convergence bound for policy evaluation
which shows that we can provably learn the value function in finite time, even
with an arbitrarily large (or infinite) state space. This is a desirable result: if a
state 𝑠 is almost never observed for the measure 𝜌, an estimate 𝑉 (𝑠) will clearly be
inaccurate, but because we consider the 𝐿1(𝜌) or 𝐿2(𝜌) norms which weights the
error in state 𝑠 with 𝜌𝑠, this error is 𝑠 should be controlled.

We use the following quantity Λ𝑡(𝜌𝑃 ), introduced by Cohen et al. (2020) in the
context of discrete distribution learning:

Λ𝑡(𝜌𝑃 ) :=
∑︁

(𝑠,𝑠′)|𝜌𝑠𝑃𝑠𝑠′<1/𝑡

𝜌𝑠𝑃𝑠𝑠′ +
1√
𝑡

∑︁
(𝑠,𝑠′)|𝜌𝑠𝑃𝑠𝑠′⩾1/𝑡

√︀
𝜌𝑠𝑃𝑠𝑠′ (3.14)

The sequence Λ𝑡(𝜌𝑃 ) is decreasing when 𝑡 increases. We easily have Λ𝑡(𝜌𝑃 ) ⩾ 1√
𝑡
.

Moreover, if 𝒮 is finite, then we have Λ𝑡(𝜌𝑃 ) ⩽
√︁

𝐸
𝑡

where 𝐸 is the number of
edge in the graph ((𝑠, 𝑠′) is an edge if 𝑃 𝜋

𝑠𝑠′ > 0). The equality corresponds to an
environment in which the probability distribution 𝑃 (.|𝑠) is uniform for every state
𝑠. More generally, the quantity Λ𝑡(𝜌𝑃 ) is lower if when the distribution is short
tail. Interestingly, the quantity Λ𝑡(𝜌𝑃 ) is still well defined when 𝒮 is infinite, and
can handle a large number of states with low probability.
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• We consider the process estimate 𝑃𝑡 defined above, obtained by keeping a
frequency matrix of every transition starting from every state, and similarly
a tabular model �̂�𝑡 of the reward. We define the value estimate as 𝑉𝑡 :=
(Id−𝛾𝑃 )−1�̂�𝑡. Then, after 𝑡 i.i.d. observations (𝑠 ∼ 𝜌, 𝑠′ ∼ 𝑃𝑠𝑠′), we have
with probability 1− 𝛿 (Theorem 10.2):

‖𝑉𝑡(𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽
𝑅max

(1− 𝛾)2

⎛⎝10Λ𝑡(𝜌𝑃 ) + 9

√︃
log 4

𝛿

𝑡

⎞⎠ (3.15)

For a finite environment, we can use that Λ𝑡(𝜌𝑃 ) ⩽
√︁

𝐸
𝑡

and the bound corresponds
to

‖𝑉𝑡(𝑠)− 𝑉 (𝑠)‖𝐿1(𝜌) ⩽
𝑅max

(1− 𝛾)2
√
𝑡

(︃
10
√
𝐸 + 9

√︂
log

4

𝛿

)︃
. (3.16)

We compare these convergence to known results for policy evaluation. In particular,
we consider the results from Bhandari et al. (2018) for Temporal Difference for the
norm 𝐿2(𝜌) under the same i.i.d observation model, and the results from Pananjady
and Wainwright (2019), for an algorithm equivalent to SSIPE (called the plug-in in
their work), for the 𝐿∞ norm, under the synchronous observation model (at every
step, a transition from every state is observed).

From these comparisons, our bounds raises a few interesting properties. First,
they are remarkably simple, and only depend on 𝛾, 𝑅max, and the number of edges
in the graph (or Λ𝑡(𝜌𝑃 )). Then, it is, to our knowledge the first bound for policy
evaluation, for i.i.d. (or trajectory) data, which is non-vacuous even when some
states are hardly ever visited (𝜌(𝑠) is very small), or when the number of states
goes to infinity.

3.6 Matrix Factorization and the Forward-Backward parametriza-
tion

Finally, we get back to continuous environments, and study a specific parametric
model for the successor state operator, in order to mitigate the variance issue of the
Bellman–Newton method. We consider the model 𝑀𝜃(𝑠1, d𝑠2) = 𝑚𝜃(𝑠1, 𝑠2)𝜌(d𝑠2)
with the particular choice:

𝑚𝜃(𝑠1, 𝑠2) = ⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵(𝑠2)⟩ =
𝑟∑︁

𝑖=1

(𝐹𝜃𝐹 (𝑠1))𝑖 (𝐵𝜃𝐵(𝑠2))𝑖 (3.17)

where 𝐹 : 𝑆 → R𝑟 and 𝐵 : 𝑆 → R𝑟 are two learnable functions from the state space
to some representation space R𝑟, parameterized by 𝜃 = (𝜃𝐹 , 𝜃𝐵). This provides
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an approximation of 𝑀 by a rank-𝑟 operator. Such a factorization is used for
instance in (Schaul et al., 2015) for the goal-dependent 𝑄-function (up to the
factor 𝜌). Intuitively, 𝐹 is a “forward ” representation of states and 𝐵 a “backward ”
representation: if the future of 𝑠1 matches the past of 𝑠2, then 𝑀(𝑠1, d𝑠2) is large.

The forward-TD and backward-TD algorithms introduced above can be directly
applied to the FB parametrization, simply by considering 𝑚𝜃(𝑠1, 𝑠2) as any function
approximator. Actually, it is also possible to mix the forward and backward updates:
if we consider 𝜃𝐵 as fixed, we can use the forward or backward TD algorithms on
the model 𝜃𝐹 ↦→ ⟨𝐹𝜃𝐹 (.), 𝐵𝜃𝐵(.)⟩. This defines forward and backward updates for
𝐹𝜃𝐹 , and we can define similarly forward and backward updates for 𝐵𝜃𝐵 . We can
then mix these updates and use independently a forward/backward update for 𝐹
and a potentially different update for 𝐵𝜃𝐵 .

• We define the mixed algorithms forward-forward, forward-backward, backward-
forward and backward-backward for the FB parametrization. We show that
the true successor state operator 𝑀𝜋 is a fixed point of every of these four
algorithms (Theorem ref11.1).

We then study in more details the forward-backward algorithm. Indeed, this
algorithm has two interesting properties. The first one is about variance. We learn
online estimates Σ̂𝐹 and Σ̂𝐵 of the 𝑟× 𝑟 covariance matrices Σ𝐹 and Σ𝐵 defined as
Σ𝐹 := E𝑠1∼𝜌𝐹 (𝑠1)𝐹 (𝑠1)

⊤ and Σ𝐵 := E𝑠1∼𝜌𝐵(𝑠1)𝐵(𝑠1)
⊤, for example by computing

a moving average of the matrices 𝐹 (𝑠)𝐹 (𝑠)⊤ for every observed state. Then, we
define a FB update with reduced variance:

• Knowing estimates Σ̂𝐹 and Σ̂𝐵 of Σ𝐹 and Σ𝐵, we define an update ̂︀𝛿𝜃fb-TD(𝑠, 𝑠
′, Σ̂𝐹 , Σ̂𝐵),

where (𝑠, 𝑠′) is supposed to be an observed transition in the process (Algo-
rithm 10).

Contrary to the Forward or Backward TD algorithm defined for any model
𝑚𝜃, this update does not require the sampling of an additional state 𝑠2.

We prove that, if we our estimates of the covariance matrices are correct
(Σ̃𝐹 = Σ𝐹 and Σ̃𝐵 = Σ𝐵), the update ̂︀𝛿𝜃fb-TD is an unbiased estimate of the
Forward Bellman error gradient for 𝐹 and of the Backward Bellman error for
𝐵, but with lower variance (Theorem 11.2).

The second interesting property is a relation between the fixed points of this method
and the SVD. We know that the optimal low-rank approximation of an operator
for the 𝐿2 norm corresponds to a truncated SVD. We have the following result:

• We show that the fixed point of the forward-backward TD algorithm are
truncated SVDs of rank 𝑟 of the true successor states operator 𝑀𝜋 for the
norm 𝐿2(𝜌) (Theorem 11.3).
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This statement is necessary but not sufficient to show that the algorithm will
converge to the optimal low-rank representation. In practice, we observe that this
algorithm converges to the optimal low-rank representation of the successor state
operator in simple environments.

Additionally, these representations might be useful for other purposes. Once
state (or state-actions) representation are computed, they can be used directly as
input of a more simple policy (Ha and Schmidhuber, 2018). They can also be used
to derive a bonus for exploration (Machado et al., 2019). These FB representations
only depend on the dynamics and not on other signals (such as pixels), which can
be irrelevant for the task and biased representation learning toward ignoring the
most important information.

Finally we show that the Forward-Backward algorithm is related to the Bellman–
Newton update defined in the previous section:

• In a limited setting (tabular, in a reversible process in which the uniform
measure is the invariant measure of the process), we show that for small learn-
ing rates, the Forward-Backward update is equivalent to Bellman–Newton
update (Theorem 11.6).

This result is interesting, as it suggests that the FB algorithm might share with
the Bellman–Newton algorithm the relation with implicit process estimation, hence
its sample efficiency, without the variance issue of Bellman–Newton.

In the next section, we finally describe several methods to learn the value
function 𝑉 𝜋 via the successor states operator.

3.7 Learning value functions via successor states models

In Chapter 12, we describe several methods to learn a model 𝑉𝜙(𝑠) of the value
function 𝑉 𝜋 once we are able to learn a model of the successor states operator. We
mainly define two approaches: first, by using the equation 𝑉 𝜋(𝑠) = (𝑀𝜋 ·𝑅)(𝑠) and
estimating the integral

∫︀
𝑠2
𝜌(d𝑠2)𝑚𝜃(𝑠, 𝑠2)𝑅(𝑠2). Then, by using 𝑚𝜃 as a way to

propagate the Bellman error of Temporal Difference in the environment, similarly
to TD(𝜆) with eligibility traces.

Estimating the value function via 𝑉 𝜋 = 𝑀𝜋 ·𝑅 We know that:

𝑉 𝜋(𝑠) = (𝑀𝜋 ·𝑅)(𝑠) =

∫︁
𝑠2

𝑀𝜋(𝑠, d𝑠2)𝑅(𝑠2) (3.18)

Therefore, after learning a model 𝑚𝜃(𝑠1, 𝑠2), we might want to use the model:

𝑉 (𝑠) :=

∫︁
𝑠2

𝜌(d𝑠2)𝑚𝜃(𝑠, 𝑠2)𝑅(𝑠2) (3.19)
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. We introduce three cases in which we can estimate the integral (3.19):

• If the reward is sparse and located in a single known state 𝑠tar, equation (3.19)
corresponds to:

𝑉 (𝑠) = 𝑚𝜃(𝑠, 𝑠
tar) (3.20)

up to a multiplicative factor independent of 𝑠. Hence, we can directly use
𝑚𝜃(𝑠, 𝑠

tar) as an estimate of the value function 𝑉 𝜋.

• If the reward is dense, we consider a model 𝑉𝜙(𝑠) (such as a neural network),
and optimize the parameter 𝜙 such that 𝑉𝜙 ≈ 𝑉 . We store a buffer of
tuples (𝑠, 𝑟𝑠) where 𝑠 is an observed state and 𝑟𝑠 the reward observed in
𝑠. Then, we can learn 𝑉𝜙 in a supervised way: by sampling (𝑠, 𝑟𝑟) in the
buffer and an additional independent state 𝑠1, and reduce the empirical loss
(𝑉𝜙(𝑠1)−𝑚𝜃(𝑠1, 𝑠)𝑟𝑠)

2

This approach reduces the problem of policy evaluation to a supervised
learning problem (once a model 𝑚𝜃 is learned)

• If the reward is dense and we additionally use the Forward-Backward parametriza-
tion described in the previous section (𝑚𝜃(𝑠1, 𝑠2) := ⟨𝐹𝜃𝐹 (𝑠1), 𝐵𝜃𝐵(𝑠2)⟩ where
𝐹 (𝑠) and 𝐵(𝑠) are low rank representations in R𝑘), we have: 𝑉 (𝑠) =
E𝑠2∼𝜌 [⟨𝐹𝜃𝐹 (𝑠), 𝐵𝜃𝐵(𝑠2)⟩] = ⟨𝐹𝜃𝐹 (𝑠), 𝑏⟩ where 𝑏 := E𝑠2∼𝜌 [𝐵𝜃𝐵(𝑠2)]. In that
case, we can estimate 𝑏 with an online averaging �̂� ∈ R𝑘 of state representa-
tions (�̂� := 1

𝑡

∑︀𝑡
𝑖=1𝐵𝜃𝐵(𝑠𝑖)), and then use the following estimate for the value

function: 𝑉 (𝑠) = ⟨𝐹𝜃𝐹 (𝑠), �̂�⟩. With this approach, there is no need to learn
an additional parametric model 𝑉𝜙 of the value function.

Using 𝑀 to propagate the Bellman error in the environment: expected
value update via process estimation, and expected TD(𝜆) update We now
consider an other approach for policy evaluation via the successor states operator,
in which the successor state model 𝑚𝜃 is used to propagate the Bellman error in the
environment, or in other words to improve the credit assignment when observing a
transition (𝑠, 𝑟, 𝑠′).

First, we derive this method from the expected value update via the process
estimation approach in the tabular case, introduced in Section 3.4 of this overview,
defined as 𝑉𝑡 := �̂�𝑡�̂�𝑡, where �̂�𝑡 := (Id−𝛾𝑃𝑡)

−1 and 𝑃𝑡 is the frequency matrix of
observed transitions.

• We show that, in expectation over the transition observed at step 𝑡 (𝑠𝑡, 𝑟, 𝑠𝑡+1),
conditionally to the current estimates 𝑉𝑡,𝑀𝑡, we have E𝑠𝑡∼𝜌,𝑠′𝑡∼𝑃 (.|𝑠𝑡),𝑟∼ℛ(.|𝑠) [𝑉𝑡+1] =
𝑉𝑡 +

1
𝑡
𝛿𝑉 + 𝑜(1/𝑡), where 𝛿𝑉 = 𝑀𝑡(𝑅 + 𝛾𝑃𝑉𝑡 − 𝑉𝑡) (Theorem 12.1).
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Informally, this equation means that when observing a transition (𝑠, 𝑟, 𝑠′), the
bellman error (𝑟𝑠 + 𝛾𝑉𝑡(𝑠

′) − 𝑉𝑡(𝑠)) is propagated to every state 𝑠1 with weight
�̂�𝑡(𝑠1, 𝑠). Hence, 𝑀𝑡(𝑠1, 𝑠) propagates the credit in the entire environment. We
then generalize this update for function approximations:

• Once we know a model 𝑚𝜃(𝑠1, 𝑠2) of the successor states density, we define
the stochastic update ̂︁𝛿𝜙prop-TD(𝑠, 𝑠

′, 𝑟, 𝑠1) for the value function 𝑉𝜙 where we
assume (𝑠, 𝑟, 𝑠′) is a transition observed in the Markov Process and 𝑠1 is a state
sampled independently, as: ̂︁𝛿𝜙prop-TD(𝑠, 𝑠

′, 𝑟𝑠, 𝑠1) = 𝜕𝜙𝑉𝜙(𝑠1)𝑚𝜃(𝑠1, 𝑠) (𝑟𝑠 + 𝛾𝑉𝜙(𝑠
′)− 𝑉𝜙(𝑠))

(Algorithm 13).

We prove that ̂︁𝛿𝜙prop-TD is an unbiased estimate of ‖𝑉𝜙 − 𝑉 tar‖2𝜌, where
𝑉 tar := 𝑉𝜙 + 𝛿𝑉 and 𝛿𝑉 is defined as in the tabular expected value update
via process estimation: 𝛿𝑉 = 𝑀𝜃(𝑅 + 𝛾𝑃𝑉𝜙 − 𝑉𝜙) (Theorem 12.2).

Hence, this method can be seen as an approximation of the online update of the
value function for the process estimation method, with function approximations.

We then show in Section 12.2.3 that this update corresponds to an estimate of
the expected eligibility traces update in TD(𝜆). Eligibility traces, introduced in
Section 1.4.2 are a way to improve credit assignment by propagating the Bellman
error to the states recently visited in the current trajectory. We show that our
approach is tackling credit assignment by propagating the Bellman error to all
states which could have been visited from the current state 𝑠, according to the
distribution of predecessor states, which is equivalent to the expected traces for a
state 𝑠.

• We prove that the TD(𝜆) update with eligibility traces and the updatê︁𝛿𝜙prop-TD estimating the value update via process estimation are both ap-
proximating the expected eligibility traces (Theorem 12.3).

This method is closely related to expected eligibility traces (van Hasselt et al., 2020),
and source traces (Pitis, 2018), both discussed in Section 12.2.3.

One of our issues while working on this project was to find the proper experimen-
tal setup. As discussed in Section 3.4, learning a model 𝑚𝜃(𝑠1, 𝑠2) of the successor
state operator raises multiple technical issues. Additionally, we cannot measure the
direct efficiency of learning the successor states operator to improve our method:
we first need to compute a value function, then to plug this estimate into an other
RL algorithm such as actor critic, and observe the policy improvement. Hence, our
measure of progress was very indirect.
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We wanted to focus on a simple setup, but still with continuous state space. The
simplest case for deriving the value function from the successor state operator, in a
continuous state space, is when the reward is sparse and localized in a known target
state 𝑠tar. Unfortunately, this is not a frequent setting in standard environments.
Still, this setup is quite similar to multi-goal RL, in which the reward is localized
in a known goal state 𝑔. The main difference is that in multi-goal RL, the agent
learns a goal-dependent policy 𝜋(𝑎|𝑠, 𝑔), whose objective is to reach 𝑔, while in our
setup, the policy was not goal-dependent 𝜋(𝑎|𝑠).

We extended our approach for the successor state operator with a fixed policy to
the multi-goal RL setting. In the next Section, we describe how this approach allows
us to derive unbiased Q-learning methods and actor-critic methods for multi-goal
RL, dealing with the issue of sparse rewards.

4 Unbiased methods for multi-goal RL

In Part V, we present our work on multi-goal reinforcement learning problems.
This part is mainly based on the following preprint:

Blier, L. and Ollivier, Y. (2021). Unbiased methods for multi-goal
reinforcement learning. arXiv preprint arXiv:2106.08863

In the last part of the thesis, we study Multi-goal reinforcement learning is
a specific setting of RL where the agent learns a goal-dependent policy 𝜋(𝑎|𝑠, 𝑔),
whose objective is to reach a goal 𝑔 in the environment. In this introduction we
will consider only states as goals (𝑔 ∈ 𝒮), but in Part V the setting is more general.

This setting is not the same the one used in the previous part, for policy
evaluation via the successor state operator. In the previous part, via 𝑀𝜋, we are
estimating the value function of a non-goal dependent policy 𝜋(.|𝑠) for reaching
any goal 𝑔. In this part, the policy is different for every goal. Still, we are able
to translate some of the tools developed for the successor states for the goal
oriented setting. Let ℳ be a multi-goal environment with state space 𝒮 and a goal
dependent reward 𝑅(𝑠, 𝑔). Typically, in a discrete environment, the goal dependent
reward is defined as 𝑅(𝑠, 𝑔) = 1𝑠=𝑔, which is the sparse reward, non-zero only if
the goal is reached. We try to optimize a policy 𝜋(.|𝑠, 𝑔).

We define the augmented environment ℳ̃ with state space 𝒮 := 𝒮 × 𝒮, in
which the current state 𝑠 ∈ 𝒮 is defined as 𝑠 := (𝑠, 𝑔), the tuple containing the
state in the original process 𝑠 and the currently aimed goal 𝑔. In the augmented
environment, the goal-dependent reward 𝑅(𝑠, 𝑔) becomes the non-goal oriented
reward �̃�(𝑠) := 𝑅(𝑠, 𝑔), and similarly the goal-oriented policy 𝜋(𝑎|𝑠, 𝑔) becomes
the non-goal oriented policy �̃�(𝑎|𝑠). In that setting, estimating the multi-goal value
function 𝑉 𝜋(.|.,𝑔)(𝑠, 𝑔) is now equivalent to estimating the value function in the
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augmented environment 𝑉 �̃�(𝑠), if the reward is a sparse reward in 𝑔. Estimating the
value function for every sparse goal is now very similar to estimating the successor
states operator in the augmented environment ℳ̃.

The first known approach for multi-goal RL is with Universal Value Function
Approximators (UVFA) (Schaul et al., 2015), which extend the classical Q-learning
and Temporal Difference (TD) algorithms to the multi-goal setting. It learns
the goal-conditioned value-function 𝑉 𝜋(𝑠, 𝑔) or 𝑄-function 𝑄*(𝑠, 𝑎, 𝑔) for every
state-goal pair, with function approximation, via a TD algorithm.

Still, UVFA requires observing rewards, and no learning occurs until a reward
is observed. In continuous state spaces, the reward is usually defined as 𝑅𝜀(𝑠, 𝑔) =
1‖𝑠−𝑔‖⩽𝜀. When 𝜀 → 0, the probability of reaching the reward with a stochastic
policy goes to 0, and UVFA can’t learn. In practice, UVFA fails in many high
dimensional environments, when the probability of reaching the target goal is low
and the agent almost never gets any learning signal. We call this phenomena the
issue of vanishing rewards.

The most popular method in that setting is Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017). It leverages information between goals via the following
principle: trajectories aiming at a goal 𝑔 but reaching a goal 𝑔′ can be used for
learning exactly as if the trajectory had been aiming at 𝑔′ from start. This strategy
has proved successful in practice and removes the issue of vanishing rewards, but is
known to be biased (Manela and Biess, 2021; Lanka and Wu, 2018).

In the following, we first study some of HER’s theoretical properties. Then,
we will derive a Q-learning algorithm and an actor-critic algorithm for multi-goal
environments.

4.1 A study of Hindsight Experience Replay’s bias

While HER has proved successful in practice, it is known to be biased (Manela and
Biess, 2021; Lanka and Wu, 2018), which means it could converge in some settings
to low-return policy. This bias corresponds to a well-known psychological bias
(Fischhoff, 1975). In their request for research for robotic multi-goal environments,
Plappert et al. (2018) list the necessity for an unbiased version of HER, as such
bias can lead to low-return policies.

In chapter 14, we study HER’s bias. First, we confirm theoretically that HER
is biased:

• We define counter-example environments, such that it highlights HER’s bias.
Theoretically, we prove that HER cannot converge to the true optimal 𝑄-
function 𝑄* in these environments (Theorem 14.2). Empirically, we show
that in such environments, HER converges to a low-return policy.
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Our second contribution on HER is a positive result. We show that despite its
bias in general settings, HER is mathematically well-grounded in deterministic
environments:

• We show that HER is actually unbiased in deterministic environments (Theo-
rem 14.1).

This result vindicates HER for deterministic environments: HER leverages the
structure of multi-goal environments, is not vanishing when the rewards are sparse,
and is mathematically well-grounded. This covers many usual environments such
as robotic environments.

4.2 Multi-goal RL via infinitely sparse rewards

While HER is well-founded in deterministic environments, it is biased in the
stochastic case and can learn low-return policies. We now introduce unbiased
methods for multi-goal RL in the general setting, including stochastic environments,
removing the issue of vanishing rewards. We first introduce the setting used to
derive our algorithms.

In continuous state spaces, the goal-oriented reward is usually defined as:

𝑅𝜀(𝑠, 𝑔) = 1‖𝑠−𝑔‖⩽𝜀. (4.1)

When 𝜀 → 0, the probability of reaching the reward with a stochastic policy goes
to 0, and for any stochastic policy, the value function 𝑉 𝜋

𝜀 (𝑠, 𝑔) converges to 0 as
well. This is the vanishing rewards issue. To avoid this issue, we need a scaling
factor, and consider the reward 1

𝜆(𝜀)
𝑅𝜀(𝑠, 𝑔), with 𝜆(𝜀) the volume of the ball of

size 𝜀 in 𝒮. When 𝜀 → 0, this rescaled reward converges to the Dirac reward :

𝑅(𝑠, d𝑔) := 𝛿𝑠(d𝑔), (4.2)

where 𝛿𝑥 is the Dirac measure at 𝑥. Intuitively, the Dirac reward 𝑅(𝑠, d𝑔) is infinite
if the goal is reached (𝑠 = 𝑔) and 0 elsewhere. Formally, the reward is not a function
but a measure on the goal space 𝒢 parametrized by the state 𝑠.

However, even after such a scaling, the UVFA update still vanishes with high
probability for small 𝜀 (this just scales things by 1/𝜆(𝜀)). We will build algorithms
that work directly in the limit 𝜀 = 0: replacing the sparse reward 𝑅𝜀(𝑠, 𝑔) by
the infinitely sparse reward 𝑅(𝑠, d𝑔) = 𝛿𝑠(d𝑔) will allow us to leverage the Dirac
structure to remove the vanishing rewards issue.

The first step is to understand this setting mathematically. In Chapter 13, we
formally define multi-goal RL with infinitely sparse rewards, and check that it
corresponds asymptotically to the original problem with reward 𝑅𝜀:
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• We properly define the infinitely sparse reward via Dirac measures, and show
that it corresponds to the limit of the reward 𝑅𝜀.

Under continuity assumptions, we define the corresponding expected return
with infinitely sparse rewards 𝐽(𝜋), and show that its corresponds to the limit
of the limit of the return 𝐽𝜀(𝜋) with reward 𝑅𝜀 when 𝜀 → 0: 𝐽𝜀(𝜋) →𝜀→0 𝐽(𝜋)
(Theorem 13.8).

Under these assumptions, we show that if 𝜋1(.|𝑠, 𝑔) and 𝜋2(.|𝑠, 𝑔) are two
goal-conditioned policies, 𝜋1 is better than 𝜋2 with infinitely sparse rewards
if and only if 𝜋1 is asymptotically better than 𝜋2 for reward 𝑅𝜀 when 𝜀 → 0
(Theorem 13.7).

There results allow us to work directly with infinitely sparse rewards, even for
solving the original problem with reward 𝑅𝜀, when 𝜀 is small. Counter-intuitively,
replacing sparse rewards by infinitely sparse rewards solves the vanishing issue.
Instead of waiting an observation of the reward, we can algebraically compute the
reward contribution in the updates, leveraging our knowledge on the Dirac function,
an obtain non-vanishing algorithms.

In the following sections, we describe how to design Q-learning and actor-critic
methods, with no vanishing reward issue, via infinitely sparse rewards.

4.3 Unbiased actor-critic for multi-goal RL

In chapter 16, we describe actor critic methods for multi-goal RL via infinitely sparse
rewards. We consider a parametric goal-conditioned policy 𝜋𝜃𝜋(𝑎|𝑠, 𝑔). Our goal is to
maximize 𝜃𝜋 ↦→ 𝐽(𝜋𝜃𝜋), by computing stochastic estimates of 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋). Our goal is
to adapt the standard policy gradient theorem stated in Proposition 1.3 in the case of
goal-oriented environments: 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋) = E𝑠,𝑎,𝑠′ [𝜕𝜃𝜋 log 𝜋𝜃𝜋 (𝑎|𝑠) (𝑟𝑠 + 𝛾𝑉 𝜋(𝑠′)− 𝑉 𝜋(𝑠))].
This requires learning a model of the multi-goal value function.

Actually, we show that while the value function satisfies a Bellman equation, it is
not directly possible to estimate an unbiased estimate of the Bellman error gradient
on the value function. This can be explained because of the double dependency of
the value function as a function of the goal: the goal both defines the policy and
the reward. These two effects need to be separated in order to get an unbiased
estimate of Bellman error gradient. We mitigate this issue by introducing the
successor goal operator 𝑀𝜋(𝑠, 𝑔1, d𝑔2). This object is very similar to the successor
states operator, and describes the expected discounted time spent in the goal 𝑔2 if
following the policy 𝑔1. We have the following relation between the goal-conditioned
value measure and the successor goal operator:

• Under continuity assumptions, we can compute the goal conditioned value
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measure from the successor goal operator, using:

𝑉 𝜋(𝑠, d𝑔) = 𝑀𝜋(𝑠, 𝑔, d𝑔) (4.3)

Hence, if we are able to learn a model 𝑀𝜃(𝑠, 𝑔1, d𝑔2) = 𝑚𝜃(𝑠, 𝑔1, 𝑔2)𝜌(d𝑔2)
for the successor goal operator, we naturally obtain a model 𝑉𝜃(𝑠, d𝑔) =
𝑚𝜃(𝑠, 𝑔, 𝑔)𝜌(d𝑔) of the goal-conditioned value measure (Theorem 13.5).

Therefore, our objective is now to describe how to learn an unbiased estimate of
the successor goal operator 𝑀𝜋(𝑠, 𝑔1, d𝑔2). This can be done by applying some of
our results derived for the successor goals operator:

• We define a 𝛾-contractive Bellman operator for the successor goals operator,
show that its unique fixed point is the true successor goals operator 𝑀𝜋, and
derive an unbiased estimate of the Bellman error’s gradient for function ap-
proximators (Theorems 16.1 and 13.2). This algorithm removes the vanishing
reward issue.

Finally, we are able to derive an unbiased actor-critic algorithm for goal-conditioned
policy. This actor-critic update is an extension of the standard actor-critic update
defined in Proposition 1.3, but for multi-goal environments:

• We define the actor-critic update ̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔)̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠

′, 𝑔) := 𝜕𝜃 log 𝜋𝜃(𝑎|𝑠, 𝑔) (𝛾𝑚𝜃𝑀 (𝑠′, 𝑔, 𝑔)−𝑚𝜃𝑀 (𝑠, 𝑔, 𝑔)) (4.4)

where we assume (𝑠, 𝑎, 𝑠′) is a transition observed while aiming for goal 𝑔.

We show that with an accurate model 𝑚𝜃𝑀 of the successor goals operator,̂︀𝛿𝜃𝛿-AC(𝑠, 𝑎, 𝑠
′, 𝑔) is an unbiased estimate of the policy gradient 𝜕𝜃𝜋𝐽(𝜋𝜃𝜋)

(Theorem 16.2).

4.4 Unbiased Q-learning for multi-goal RL

In Chapter 15, we derive an unbiased Q-learning algorithm with infinitely sparse
rewards, solving the issue of vanishing rewards. Our approach is similar to the
strategy described for the successor state operator: first, we define a contractive
operator on the space of action-value measures such that its fixed point is the
𝑄*(𝑠, 𝑎, d𝑔), then we use this operator to define an unbiased 𝑄-learning method
with function approximators:

• We formally define the optimal action-value measure 𝑄*(𝑠, 𝑎, d𝑔), and the
optimal Bellman operator for action-value measure:

𝑄(𝑠, 𝑎, .) ↦→ 𝛿𝑠(.) + 𝛾E𝑠′∼𝑃 (.|𝑠,𝑎)

[︂
sup
𝑎′

𝑄(𝑠′, 𝑎′, .)

]︂
, (4.5)
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We show that if we define the sequence 𝑄𝑡+1 := 𝑇 · 𝑄𝑡, then 𝑄𝑡 →𝑡→∞ 𝑄*,
similarly to standard result on the 𝑄-function and the optimal Bellman
operator.

Once we defined 𝑄* and the optimal Bellman operator, we can derive a 𝑄-learning
algorithm with function approximations, similarly to our approach for learning
the successor state operator. We represent a model 𝑄𝜃(𝑠, 𝑎, d𝑔) := 𝑞𝜃(𝑠, 𝑎, 𝑔)𝜌(d𝑔),
where 𝜌 is a reference measure on goals:

• We define the stochastic update ̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠
′, 𝑔), where we assume (𝑠, 𝑎, 𝑠′)

is a transition observed in the Markov Process and 𝑔 is an independent goal:

̂︀𝛿𝜃𝛿-DQN(𝑠, 𝑎, 𝑠
′, 𝑔) := 𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑠)+𝜕𝜃𝑞𝜃(𝑠, 𝑎, 𝑔)

(︁
𝛾max

𝑎′
𝑞𝜃(𝑠

′, 𝑎′, 𝑔)− 𝑞𝜃(𝑠, 𝑎, 𝑔)
)︁

(4.6)
We then define the corresponding Q-learning algorithm with infinitely sparse
rewards (Algorithm 14). This update removes the issue of vanishing rewards.

We prove that ̂︀𝛿𝜃𝛿-DQN is an unbiased estimate of the optimal Bellman error
(Theorem 15.2).

This algorithm can be used with discrete actions such as DQN (Mnih et al., 2013) or
with continuous actions such as DDPG (Lillicrap et al., 2015). It is off-policy, hence
can be used with any exploration strategy. Informally, the first term is leveraging
that, when observing the state 𝑠, we have an information on the Q-function on how
to reach 𝑠. The second term propagates the Q-value on how to reach the target
goal 𝑔.

Experimentally, we demonstrate that the algorithms using infinitely sparse
rewards improves performance of the corresponding method (UVFA) using sparse
reward 𝑅𝜀. In environments designed to exhibit the HER bias issue, we show that
HER is unable to learn while unbiased methods can learn the optimal policy. Still,
these methods do not perform as well as HER in some standard environments, and
are unable to learn at all in more complex environments.

One of the issues of these methods is variance. The Dirac rewards remove the
infinite variance of vanishing rewards in UVFA when 𝜀 → 0 (first term of (4.6)).
But this does not change the way the reward is propagated to other states (second
term of (4.6)). Selecting goals 𝑔 more correlated to the state 𝑠 as in HER could
also be helpful, but this is not obvious to do without re-introducing HER-style
bias.

To conclude, in Part V, we prove that there exist unbiased goal-oriented RL
algorithms which do not vanish when rewards become sparse: it is possible to deal
with sparse rewards in RL directly via the infinitely sparse reward limit, although
this does not solve all variance issues. We also prove that another multi-goal
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method, HER, is unbiased and has the correct fixed point in all deterministic
environments

5 Conclusion

In this thesis, we introduced several mathematical approaches and principled
methods for deep learning and deep reinforcement learning. Our goal was to
understand some crucial properties that principled methods should satisfy, in order
to be robust, stable, efficient and work in many settings. Then, we tried to define
methods which could satisfy these properties. Along that process, we tried to
understand the mathematical objects at the core of our learning settings, how to
define them, learn them, and their properties.

Our first project (Chapter 3, Blier and Ollivier (2018)) proposed an information
theory viewpoint on the complexity of deep learning models. We proved empirically
the ability of deep neural networks to compress the training data even when
accounting for parameter encoding. Hence, deep learning models, even with a large
number of parameters, compress the data well, and these approaches are principled
from an information theory point of view: the number of parameters is not an
obstacle to compression.

We then introduced All Learning Rates At Once (Alrao) (Chapter 4, Blier
et al. (2019)), an optimization method for neural networks removing the burden of
finding the optimal learning rate, by instead assigning to each unit or feature in
the network its own learning rate sampled from a random distribution spanning
several orders of magnitude. Surprisingly, Alrao performs close to SGD with an
optimally tuned learning rate, for various architectures and problems. Alrao is
a principled way to define robust optimization method with no hyperparameter
tuning, leveraging the redundancy in the neural network architectures.

In Chapter 5, we studied RL in near continuous time environments (Tallec et al.
(2019)), and highlighted empirically and theoretically the lack of robustness of
Q-learning approaches to time discretization. We detail a principled way to build
an off-policy RL algorithm that yields similar performances over a wide range of
time discretizations, and confirm this robustness empirically.

After these projects, we focused our work on an in-depth study of the successor
states operator (Part IV, Blier et al. (2021)). This mathematical object is at
the core of Reinforcement Learning, as it contains the information on all possible
value functions for every possible rewards for a fixed policy, or equivalently the
information on all expected occupancy measure starting from any initial point,
for a fixed policy. This object was studied in finite environments (Dayan, 1993),
but the continuous state spaces raises more technical issues, especially because the
operator is not a matrix or a function but a measure. While our first motivation
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for this project was to improve sample efficiency of policy evaluation, at the end,
our contribution were especially a better theoretical understanding of this object,
its properties and equations. This study then lead to Part V and methods for
multi-goal RL. Our main contributions on the successor states operator are as
follows.

In Chapter 6, we properly define the successor states operator in continuous
state spaces and show the relation between the value function and the successor
states operator. In Chapter 7, we derive a Bellman equation and a temporal
difference algorithm for the successor states operator with function approximators
and show the relation with standard TD on the value function. Then in Chapter 8
we show that the successor states operator also satisfies a backward Bellman
equation, which has no equivalent for the value function, and lead to a backward
temporal difference algorithm. We show a relation between forward and backward
TD, as backward TD corresponds in expectation to forward TD on the time
reversed process. Then in Chapter 9, we introduce second order methods for
policy evaluation. These approaches were our first reason to study the successor
states operator at the beginning of the project. We prove that the successor states
operator satisfies a Bellman–Newton equation on the successor states operator,
which also has no equivalent on the value function. We give three interpretations
of this new Bellman–Newton equation : first, as a new way to combine paths in
the environments, then, as the Newton method for policy evaluation, and finally
as a expected exact model based update in the tabular case. This equation leads
to a new Bellman–Newton algorithm, with function approximators, in continuous
environments. We study this approach in the simpler tabular case, show empirically
that it is more sample efficient than TD or TD(𝜆) in finite environments, and
provide non asymptotic convergence bounds for this method in the tabular case
(Chapter 10), which interestingly are independent of the number of states, hence
are non-vacuous even for very large or infinite environments. This proves that it
is possible to learn the value function in finite time, with theoretical guarantees,
even in an infinite environment. Still, one of the main practical issues of the
Bellman–Newton algorithm with function approximators is its variance, which
makes it highly unstable in practice. To overcome this issue, we consider low
rank FB representations for the successor states (Chapter 11). Using this FB
representation allow us to define updates with lower variance. Additionally, we
prove theoretically that the fixed point of these methods are truncated SVDs of the
successor states operator, and that in practice it converges to its optimal low-rank
representation. Finally in Chapter 12 we described several methods to learn the
value function via a model of the successor states operator. In particular, we see
that the successor states operator can be used as a model of the expected eligibility
traces.
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We then extended our approach to the multi-goal RL setting (Part V, Blier and
Ollivier (2021)). We tackle the issues of vanishing rewards observed with methods
as Universal Value Function Approximators (Schaul et al., 2015). While methods
such as Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) tackle this
issue and achieve great results in practice, they are known to be biased, and can
converge to low-return policies in some cases. We first study the bias of HER, prove
theoretically and empirically that it is unable to learn in some environments. On
the other side, we prove that HER is unbiased and well-founded, in deterministic
environments. We then introduce unbiased Q-learning and Actor-critic algorithms
for multi-goal RL, in the general stochastic setting, by replacing standard sparse
rewards of multi-goal RL by infinitely sparse Dirac rewards, and leveraging their
structure.

My goal during this thesis was to improve performance of deep learning and
deep RL with principled approaches. Trying to go from theoretical understanding
to experimental results was quite a journey, and not always successful in the way
we intended.

Some of our conclusion were negative results, impossible to translates in practical
methods. In The description Length of Deep Learning Models, our first motivation
was to use the information theory viewpoint to derive well-founded regularizers via
compression bounds. At the end, our best compression bounds were intractable and
useless to optimize deep learning models. But our main contribution was to show
that standard deep RL approaches were already consistent with the information
theory viewpoint, without the use of any additional regularizer.

We also sometimes struggled when comparing to standards methods which
benefited from years of careful engineering tuning: in that case, a well-founded
method might have nothing to improve. For example in Making Deep Q-learning
approaches robust to time discretization, we thought that the lack of robustness of
standard approaches in near continuous time would be a huge limitation in usual
environments, and that our approach could improve these results. Actually, we
found out that the time discretization of standard environments was set such that
learning was possible, hence we observed almost no improvement in that regime,
and had to look for smaller time discretization to highlight the practical issue we
identified theoretically. But our contribution gave some interesting insights on
some ways to design robust Q-learning agents.

Our study of the successor states operator happened to be even harder. We
started this project with the hope of a significant practical impact on policy
evaluation, with function approximators, thanks to the Bellman–Newton equation
and its different exciting interpretations. In turned out we quickly encountered
experimental obstacles, at first because of the variance of the method then for
other reasons. We tried to switch to the multi-goal setting but did not succeed in
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reaching results comparable to those of HER in standard environments.
During this adventure, we understood a lot. On the successor states operator,

which we believe is at the core of reinforcement learning. On the different ways to
leverage gathered information for policy evaluation. And some of our most striking
results were not in the direction we expected. For example, studying the tabular
RL setting was not our main goal. But at some point we wondered what would be
the sample efficiency of our method in that case, to understand how much gain we
could hope in the general continuous case compared to temporal difference. This
lead to a non-vacuous convergence bound for policy evaluation, even for very large
or infinite sets. Similarly, in the multi-goal RL setting, one of our goal was to design
an efficient and principled methods, solving the bias issue of HER. Surprisingly, we
proved that HER is actually unbiased in the deterministic setting.

Many questions remain open for future work: Is there still a way to leverage the
path composition of Bellman–Newton to accelerate policy evaluation, with function
approximators, without the variance issue? Is policy evaluation still a bottleneck
of RL, and how much can we improve it? How could we reliably make use the FB
representation in practice? Is it possible to define an unbiased multi-goal algorithm,
able to reach similar performance than HER? What are the most natural and
efficient ways to generalize across goals in an environment? And many others. I
hope that our theoretical insights will be of interest for other researchers in the
field, who might tackle some of these open questions, or others I never imagined.
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